16,204 research outputs found

    Spin Hall effect in infinitely large and finite-size diffusive Rashba two-dimensional electron systems: A helicity-basis nonequilibrium Green's function approach

    Full text link
    A nonequilibrium Green's function approach is employed to investigate the spin-Hall effect in diffusive two-dimensional electron systems with Rashba spin-orbit interaction. Considering a long-range electron-impurity scattering potential in the self-consistent Born approximation, we find that the spin-Hall effect arises from two distinct interband polarizations in helicity basis: a disorder-unrelated polarization directly induced by the electric field and a polarization mediated by electron-impurity scattering. The disorder-unrelated polarization is associated with all electron states below the Fermi surface and produces the original intrinsic spin-Hall current, while the disorder-mediated polarization emerges with contribution from the electron states near the Fermi surface and gives rise to an additional contribution to the spin-Hall current. Within the diffusive regime, the total spin-Hall conductivity vanishes in {\it infinitely large} samples, independently of temperature, of the spin-orbit coupling constant, of the impurity density, and of the specific form of the electron-impurity scattering potential. However, in a {\it finite-size} Rashba two-dimensional semiconductor, the spin-Hall conductivity no longer always vanishes. Depending on the sample size in the micrometer range, it can be positive, zero or negative with a maximum absolute value reaching as large as e/8Ï€e/8\pi order of magnitude at low temperatures. As the sample size increases, the total spin-Hall conductivity oscillates with a decreasing amplitude. We also discuss the temperature dependence of the spin-Hall conductivity for different sample sizes.Comment: 9 pages, 3 figures, extended version of cond-mat/041162

    To synchronize or not to synchronize, that is the question: finite-size scaling and fluctuation effects in the Kuramoto model

    Full text link
    The entrainment transition of coupled random frequency oscillators presents a long-standing problem in nonlinear physics. The onset of entrainment in populations of large but finite size exhibits strong sensitivity to fluctuations in the oscillator density at the synchronizing frequency. This is the source for the unusual values assumed by the correlation size exponent ν′\nu'. Locally coupled oscillators on a dd-dimensional lattice exhibit two types of frequency entrainment: symmetry-breaking at d>4d > 4, and aggregation of compact synchronized domains in three and four dimensions. Various critical properties of the transition are well captured by finite-size scaling relations with simple yet unconventional exponent values.Comment: 9 pages, 1 figure, to appear in a special issue of JSTAT dedicated to Statphys2

    Properties of a coupled two species atom-heteronuclear molecule condensate

    Full text link
    We study the coherent association of a two-species atomic condensate into a condensate of heteronuclear diatomic molecules, using both a semiclassical treatment and a quantum mechanical approach. The differences and connections between the two approaches are examined. We show that, in this coupled nonlinear atom-molecule system, the population difference between the two atomic species plays a significant role in the ground-state stability properties as well as in coherent population oscillation dynamics.Comment: 7 pages, 4 figure

    Exploring surface cleaning strategies in hospital to prevent contact transmission of methicillin-resistant Staphylococcus aureus

    Get PDF
    published_or_final_versio

    KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation.

    Get PDF
    KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations

    Superconductivity at 36 K in Gadolinium-arsenide Oxides GdO1−x_{1-x}Fx_{x}FeAs

    Full text link
    In this paper we report the fabrication and superconducting properties of GdO1−x_{1-x}Fx_{x}FeAs. It is found that when x is equal to 0.17, GdO0.83_{0.83}F0.17_{0.17}FeAs is a superconductor with the onset transition temperature Tcon≈_{c}^{on}\approx 36.6K. Resistivity anomaly near 130K was observed for all samples up to x = 0.17, such a phenomenon is similar to that of LaO1−x_{1-x}Fx_{x}FeAs. Hall coefficient indicates that GdO0.83_{0.83}F0.17_{0.17}FeAs is conducted by electron-like charge carriers.Comment: 3 pages, 4 figure
    • …
    corecore