25,347 research outputs found

    Gapless Fermions and Quantum Order

    Full text link
    Using 2D quantum spin-1/2 model as a concrete example, we studied the relation between gapless fermionic excitations (spinons) and quantum orders in some spin liquid states. Using winding number, we find the projective symmetry group that characterizes the quantum order directly determines the pattern of Fermi points in the Brillouin zone. Thus quantum orders provide an origin for gapless fermionic excitations.Comment: 23 pages. LaTeX. Homepage http://dao.mit.edu/~we

    An Ultra-Low-Power Oscillator with Temperature and Process Compensation for UHF RFID Transponder

    Get PDF
    This paper presents a 1.28MHz ultra-low-power oscillator with temperature and process compensation. It is very suitable for clock generation circuits used in ultra-high-frequency (UHF) radio-frequency identification (RFID) transponders. Detailed analysis of the oscillator design, including process and temperature compensation techniques are discussed. The circuit is designed using TSMC 0.18μm standard CMOS process and simulated with Spectre. Simulation results show that, without post-fabrication calibration or off-chip components, less than ±3% frequency variation is obtained from –40 to 85°C in three different process corners. Monte Carlo simulations have also been performed, and demonstrate a 3σ deviation of about 6%. The power for the proposed circuitry is only 1.18µW at 27°C

    Escape of Ionizing Radiation from High Redshift Galaxies

    Full text link
    We model the escape of ionizing radiation from high-redshift galaxies using high-resolution Adaptive Mesh Refinement N-body + hydrodynamics simulations. Our simulations include time-dependent and spatially-resolved transfer of ionizing radiation in three dimensions, including effects of dust absorption. For galaxies of total mass M > 10^11 Msun and star formation rates SFR ~ 1-5 Msun/yr, we find angular averaged escape fractions of 0.01-0.03 over the entire redshift interval studied (3<z<9). In addition, we find that the escape fraction varies by more than an order of magnitude along different lines-of-sight within individual galaxies, from the largest values near galactic poles to the smallest along the galactic disk. The escape fraction declines steeply at lower masses and SFR. We show that the low values of escape fractions are due to a small fraction of young stars located just outside the edge of HI disk. We compare our predicted escape fraction of ionizing photons with previous results, and find a general agreement with both other simulation results and available direct detection measurements at z ~ 3. We also compare our simulations with a novel method to estimate the escape fraction in galaxies from the observed distribution of neutral hydrogen column densities along the lines of sights to long duration gamma-ray bursts. Using this method we find escape fractions of the GRB host galaxies of 2-3%, consistent with our theoretical predictions. [abridged]Comment: submitted to Ap

    Scaling of Anisotropic Flows and Nuclear Equation of State in Intermediate Energy Heavy Ion Collisions

    Full text link
    Elliptic flow (v2v_2) and hexadecupole flow (v4v_4) of light clusters have been studied in details for 25 MeV/nucleon 86^{86}Kr + 124^{124}Sn at large impact parameters by Quantum Molecular Dynamics model with different potential parameters. Four parameter sets which include soft or hard equation of state (EOS) with/without symmetry energy term are used. Both number-of-nucleon (AA) scaling of the elliptic flow versus transverse momentum (ptp_t) and the scaling of v4/A2v_4/A^{2} versus (pt/A)2(p_t/A)^2 have been demonstrated for the light clusters in all above calculation conditions. It was also found that the ratio of v4/v22v_4/{v_2}^2 keeps a constant of 1/2 which is independent of ptp_t for all the light fragments. By comparisons among different combinations of EOS and symmetry potential term, the results show that the above scaling behaviors are solid which do not depend the details of potential, while the strength of flows is sensitive to EOS and symmetry potential term.Comment: 5 pages, 5 figure

    A scheme for demonstration of fractional statistics of anyons in an exactly solvable model

    Full text link
    We propose a scheme to demonstrate fractional statistics of anyons in an exactly solvable lattice model proposed by Kitaev that involves four-body interactions. The required many-body ground state, as well as the anyon excitations and their braiding operations, can be conveniently realized through \textit{dynamic}laser manipulation of cold atoms in an optical lattice. Due to the perfect localization of anyons in this model, we show that a quantum circuit with only six qubits is enough for demonstration of the basic braiding statistics of anyons. This opens up the immediate possibility of proof-of-principle experiments with trapped ions, photons, or nuclear magnetic resonance systems.Comment: 4 pages, 3 figure

    Topological surface states in three-dimensional magnetic insulators

    Full text link
    An electron moving in a magnetically ordered background feels an effective magnetic field that can be both stronger and more rapidly varying than typical externally applied fields. One consequence is that insulating magnetic materials in three dimensions can have topologically nontrivial properties of the effective band structure. For the simplest case of two bands, these "Hopf insulators" are characterized by a topological invariant as in quantum Hall states and Z_2 topological insulators, but instead of a Chern number or parity, the underlying invariant is the Hopf invariant that classifies maps from the 3-sphere to the 2-sphere. This paper gives an efficient algorithm to compute whether a given magnetic band structure has nontrivial Hopf invariant, a double-exchange-like tight-binding model that realizes the nontrivial case, and a numerical study of the surface states of this model.Comment: 4 pages, 2 figures; published versio

    Charge and spin fractionalization in strongly correlated topological insulators

    Full text link
    We construct an effective topological Landau-Ginzburg theory that describes general SU(2) incompressible quantum liquids of strongly correlated particles in two spatial dimensions. This theory characterizes the fractionalization of quasiparticle quantum numbers and statistics in relation to the topological ground-state symmetries, and generalizes the Chern-Simons, BF and hierarchical effective gauge theories to an arbitrary representation of the SU(2) symmetry group. Our main focus are fractional topological insulators with time-reversal symmetry, which are treated as generalizations of the SU(2) quantum Hall effect.Comment: 8 pages, published versio
    corecore