37,482 research outputs found
Optical studies of carrier and phonon dynamics in Ga_{1-x}Mn_{x}As
We present a time-resolved optical study of the dynamics of carriers and
phonons in Ga_{1-x}Mn_{x}As layers for a series of Mn and hole concentrations.
While band filling is the dominant effect in transient optical absorption in
low-temperature-grown (LT) GaAs, band gap renormalization effects become
important with increasing Mn concentration in Ga_{1-x}Mn_{x}As, as inferred
from the sign of the absorption change. We also report direct observation on
lattice vibrations in Ga1-xMnxAs layers via reflective electro-optic sampling
technique. The data show increasingly fast dephasing of LO phonon oscillations
for samples with increasing Mn and hole concentration, which can be understood
in term of phonon scattering by the holes.Comment: 13 pages, 3 figures replaced Fig.1 after finding a mistake in
previous versio
Diversity and Adaptation in Large Population Games
We consider a version of large population games whose players compete for
resources using strategies with adaptable preferences. The system efficiency is
measured by the variance of the decisions. In the regime where the system can
be plagued by the maladaptive behavior of the players, we find that diversity
among the players improves the system efficiency, though it slows the
convergence to the steady state. Diversity causes a mild spread of resources at
the transient state, but reduces the uneven distribution of resources in the
steady state.Comment: 8 pages, 3 figure
Ultrafast Photoinduced Formation of Metallic State in a Perovskite-type Manganite with Short Range Charge and Orbital Order
Femtosecond reflection spectroscopy was performed on a perovskite-type
manganite, Gd0.55Sr0.45MnO3, with the short-range charge and orbital order
(CO/OO). Immediately after the photoirradiation, a large increase of the
reflectivity was detected in the mid-infrared region. The optical conductivity
spectrum under photoirradiation obtained from the Kramers-Kronig analyses of
the reflectivity changes demonstrates a formation of a metallic state. This
suggests that ferromagnetic spin arrangements occur within the time resolution
(ca. 200 fs) through the double exchange interaction, resulting in an ultrafast
CO/OO to FM switching.Comment: 4 figure
Edge detection based on morphological amoebas
Detecting the edges of objects within images is critical for quality image
processing. We present an edge-detecting technique that uses morphological
amoebas that adjust their shape based on variation in image contours. We
evaluate the method both quantitatively and qualitatively for edge detection of
images, and compare it to classic morphological methods. Our amoeba-based
edge-detection system performed better than the classic edge detectors.Comment: To appear in The Imaging Science Journa
Sausage oscillations in a plasma cylinder with a surface current
Linear sausage oscillations of a cylinder embedded in a plasma with an azimuthal magnetic field, created by a current on the surface of the cylinder, are studied. Such a plasma configuration could be applied to modelling flaring loops, and magnetic ropes in coronal mass ejections. The plasma is assumed to be cold everywhere. Dispersion relations demonstrate that the lowest radial harmonic of the sausage mode is in the trapped regime for all values of the parallel wave number. In the long-wavelength limit, phase and group speeds of this mode are equal to the Alfvén speed in the external medium. It makes the oscillation period to be determined by the ratio of the parallel wavelength, e.g. double the length of an oscillating loop, to the external Alfvén speed, allowing for its seismological estimations. The application of the results obtained to the interpretation of long-period (longer than a minute) oscillations of emission intensity detected in solar coronal structures, gives reasonable estimations of the external Alfvén speed. Cutoff values of the parallel wavenumber for higher radial harmonics are determined analytically. Implications of this finding to the observational signatures of fast magnetoacoustic wave trains guided by cylindrical plasma non-uniformities are discussed
Entanglement and statistics in Hong-Ou-Mandel interferometry
Hong-Ou-Mandel interferometry allows one to detect the presence of
entanglement in two-photon input states. The same result holds for
two-particles input states which obey to Fermionic statistics. In the latter
case however anti-bouncing introduces qualitative differences in the
interferometer response. This effect is analyzed in a Gedankenexperiment where
the particles entering the interferometer are assumed to belong to a
one-parameter family of quons which continuously interpolate between the
Bosonic and Fermionic statistics.Comment: 7 pages, 3 figures; minor editorial changes and new references adde
Systematic characterization of novel lncRNAs responding to phosphate starvation in Arabidopsis thaliana
published_or_final_versio
Screening nuclear field fluctuations in quantum dots for indistinguishable photon generation
A semiconductor quantum dot can generate highly coherent and
indistinguishable single photons. However, intrinsic semiconductor dephasing
mechanisms can reduce the visibility of two-photon interference. For an
electron in a quantum dot, a fundamental dephasing process is the hyperfine
interaction with the nuclear spin bath. Here we directly probe the consequence
of the fluctuating nuclear spins on the elastic and inelastic scattered photon
spectra from a resident electron in a single dot. We find the nuclear spin
fluctuations lead to detuned Raman scattered photons which are distinguishable
from both the elastic and incoherent components of the resonance fluorescence.
This significantly reduces two-photon interference visibility. However, we
demonstrate successful screening of the nuclear spin noise which enables the
generation of coherent single photons that exhibit high visibility two-photon
interference.Comment: 5 pages, 4 figures + Supplementary Informatio
- …
