3,100 research outputs found

    Upper critical fields and thermally-activated transport of Nd(O_0.7F_0.3)FeAs single crystal

    Full text link
    We present measurements of the resistivity and the upper critical field H_c2 of Nd(O_0.7F_0.3)FeAs single crystals in strong DC and pulsed magnetic fields up to 45 T and 60 T, respectively. We found that the field scale of H_c2 is comparable to ~100 T of high T_c cuprates. H_c2(T) parallel to the c-axis exhibits a pronounced upward curvature similar to what was extracted from earlier measurements on polycrystalline samples. Thus this behavior is indeed an intrinsic feature of oxypnictides, rather than manifestation of vortex lattice melting or granularity. The orientational dependence of H_c2 shows deviations from the one-band Ginzburg-Landau scaling. The mass anisotropy decreases as T decreases, from 9.2 at 44K to 5 at 34K. Spin dependent magnetoresistance and nonlinearities in the Hall coefficient suggest contribution to the conductivity from electron-electron interactions modified by disorder reminiscent that of diluted magnetic semiconductors. The Ohmic resistivity measured below T_c but above the irreversibility field exhibits a clear Arrhenius thermally activated behavior over 4-5 decades. The activation energy has very different field dependencies for H||ab and H\perp ab. We discuss to what extent different pairing scenarios can manifest themselves in the observed behavior of H_{c2}, using the two-band model of superconductivity. The results indicate the importance of paramagnetic effects on H_c2(T),which may significantly reduce H_c2(0) as compared toH_c2(0)~200-300 T based on extrapolations of H_c2(T) near T_c down to low temperatures.Comment: 11 pages, 16 figure

    A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution

    Full text link
    We discuss excess noise contributions of a practical balanced homodyne detector in Gaussian-modulated coherent-state (GMCS) quantum key distribution (QKD). We point out the key generated from the original realistic model of GMCS QKD may not be secure. In our refined realistic model, we take into account excess noise due to the finite bandwidth of the homodyne detector and the fluctuation of the local oscillator. A high speed balanced homodyne detector suitable for GMCS QKD in the telecommunication wavelength region is built and experimentally tested. The 3dB bandwidth of the balanced homodyne detector is found to be 104MHz and its electronic noise level is 13dB below the shot noise at a local oscillator level of 8.5*10^8 photon per pulse. The secure key rate of a GMCS QKD experiment with this homodyne detector is expected to reach Mbits/s over a few kilometers.Comment: 22 pages, 11 figure

    Appearance of Half-Metallicity in the Quaternary Heusler Alloys

    Full text link
    I report systematic first-principle calculations of the quaternary Heusler alloys like Co2_2[Cr1x_{1-x}Mnx_x]Al, Co2_2Mn[Al1x_{1-x}Snx_x] and [Fe1x_{1-x}Cox_x]2_2MnAl. I show that when the two limiting cases (x=0 or 1) correspond to a half-metallic compound, so do the intermediate cases. Moreover the total spin moment MtM_t in μB\mu_B scales linearly with the total number of valence electrons ZtZ_t (and thus with the concentration xx) following the relation Mt=Zt24M_t=Z_t-24, independently of the origin of the extra valence electrons, confirming the Slater-Pauling behavior of the normal Heusler alloys. Finally I discuss in all cases the trends in the atomic projected DOSs and in the atomic spin moments.Comment: 4 pages, 3 figures, 2 Table

    Transcript-indexed ATAC-seq for precision immune profiling.

    Get PDF
    T cells create vast amounts of diversity in the genes that encode their T cell receptors (TCRs), which enables individual clones to recognize specific peptide-major histocompatibility complex (MHC) ligands. Here we combined sequencing of the TCR-encoding genes with assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis at the single-cell level to provide information on the TCR specificity and epigenomic state of individual T cells. By using this approach, termed transcript-indexed ATAC-seq (T-ATAC-seq), we identified epigenomic signatures in immortalized leukemic T cells, primary human T cells from healthy volunteers and primary leukemic T cells from patient samples. In peripheral blood CD4+ T cells from healthy individuals, we identified cis and trans regulators of naive and memory T cell states and found substantial heterogeneity in surface-marker-defined T cell populations. In patients with a leukemic form of cutaneous T cell lymphoma, T-ATAC-seq enabled identification of leukemic and nonleukemic regulatory pathways in T cells from the same individual by allowing separation of the signals that arose from the malignant clone from the background T cell noise. Thus, T-ATAC-seq is a new tool that enables analysis of epigenomic landscapes in clonal T cells and should be valuable for studies of T cell malignancy, immunity and immunotherapy

    Fluctuation-driven capacity distribution in complex networks

    Full text link
    Maximizing robustness and minimizing cost are common objectives in the design of infrastructure networks. However, most infrastructure networks evolve and operate in a highly decentralized fashion, which may significantly impact the allocation of resources across the system. Here, we investigate this question by focusing on the relation between capacity and load in different types of real-world communication and transportation networks. We find strong empirical evidence that the actual capacity of the network elements tends to be similar to the maximum available capacity, if the cost is not strongly constraining. As more weight is given to the cost, however, the capacity approaches the load nonlinearly. In particular, all systems analyzed show larger unoccupied portions of the capacities on network elements subjected to smaller loads, which is in sharp contrast with the assumptions involved in (linear) models proposed in previous theoretical studies. We describe the observed behavior of the capacity-load relation as a function of the relative importance of the cost by using a model that optimizes capacities to cope with network traffic fluctuations. These results suggest that infrastructure systems have evolved under pressure to minimize local failures, but not necessarily global failures that can be caused by the spread of local damage through cascading processes

    AzTEC 1.1 mm Observations of the MBM12 Molecular Cloud

    Get PDF
    We present 1.1 mm observations of the dust continuum emission from the MBM12 high-latitude molecular cloud observed with the Astronomical Thermal Emission Camera (AzTEC) mounted on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. We surveyed a 6.34 deg2^2 centered on MBM12, making this the largest area that has ever been surveyed in this region with submillimeter and millimeter telescopes. Eight secure individual sources were detected with a signal-to-noise ratio of over 4.4. These eight AzTEC sources can be considered to be real astronomical objects compared to the other candidates based on calculations of the false detection rate. The distribution of the detected 1.1 mm sources or compact 1.1 mm peaks is spatially anti-correlated with that of the 100 micronm emission and the 12^{12}CO emission. We detected the 1.1 mm dust continuum emitting sources associated with two classical T Tauri stars, LkHalpha262 and LkHalpha264. Observations of spectral energy distributions (SEDs) indicate that LkHalpha262 is likely to be Class II (pre-main-sequence star), but there are also indications that it could be a late Class I (protostar). A flared disk and a bipolar cavity in the models of Class I sources lead to more complicated SEDs. From the present AzTEC observations of the MBM12 region, it appears that other sources detected with AzTEC are likely to be extragalactic and located behind MBM12. Some of these have radio counterparts and their star formation rates are derived from a fit of the SEDs to the photometric evolution of galaxies in which the effects of a dusty interstellar medium have been included.Comment: 8 pages, 6 figures, The Astrophysical Journal, in pres

    Feasibility of quantum key distribution through dense wavelength division multiplexing network

    Full text link
    In this paper, we study the feasibility of conducting quantum key distribution (QKD) together with classical communication through the same optical fiber by employing dense-wavelength-division-multiplexing (DWDM) technology at telecom wavelength. The impact of the classical channels to the quantum channel has been investigated for both QKD based on single photon detection and QKD based on homodyne detection. Our studies show that the latter can tolerate a much higher level of contamination from the classical channels than the former. This is because the local oscillator used in the homodyne detector acts as a "mode selector" which can suppress noise photons effectively. We have performed simulations based on both the decoy BB84 QKD protocol and the Gaussian modulated coherent state (GMCS) QKD protocol. While the former cannot tolerate even one classical channel (with a power of 0dBm), the latter can be multiplexed with 38 classical channels (0dBm power each channel) and still has a secure distance around 10km. Preliminary experiment has been conducted based on a 100MHz bandwidth homodyne detector.Comment: 18 pages, 5 figure

    The Layer 0 Inner Silicon Detector of the D0 Experiment

    Full text link
    This paper describes the design, fabrication, installation and performance of the new inner layer called Layer 0 (L0) that was inserted in the existing Run IIa Silicon Micro-Strip Tracker (SMT) of the D0 experiment at the Fermilab Tevatron collider. L0 provides tracking information from two layers of sensors, which are mounted with center lines at a radial distance of 16.1 mm and 17.6 mm respectively from the beam axis. The sensors and readout electronics are mounted on a specially designed and fabricated carbon fiber structure that includes cooling for sensor and readout electronics. The structure has a thin polyimide circuit bonded to it so that the circuit couples electrically to the carbon fiber allowing the support structure to be used both for detector grounding and a low impedance connection between the remotely mounted hybrids and the sensors.Comment: 28 pages, 9 figure
    corecore