27,598 research outputs found
Computational predictions of energy materials using density functional theory
In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery
Fermionic Superfluidity with Imbalanced Spin Populations and the Quantum Phase Transition to the Normal State
Whether it occurs in superconductors, helium-3 or inside a neutron star,
fermionic superfluidity requires pairing of fermions, particles with
half-integer spin. For an equal mixture of two states of fermions ("spin up"
and "spin down"), pairing can be complete and the entire system will become
superfluid. When the two populations of fermions are unequal, not every
particle can find a partner. Will the system nevertheless stay superfluid? Here
we study this intriguing question in an unequal mixture of strongly interacting
ultracold fermionic atoms. The superfluid region vs population imbalance is
mapped out by employing two complementary indicators: The presence or absence
of vortices in a rotating mixture, as well as the fraction of condensed fermion
pairs in the gas. Due to the strong interactions near a Feshbach resonance, the
superfluid state is remarkably stable in response to population imbalance. The
final breakdown of superfluidity marks a new quantum phase transition, the
Pauli limit of superfluidity.Comment: 15 pages, 5 figure
Localization of the relative phase via measurements
When two independently-prepared Bose-Einstein condensates are released from
their corresponding traps, the absorbtion image of the overlapping clouds
presents an interference pattern. Here we analyze a model introduced by
Javanainen and Yoo (J. Javanainen and S. M. Yoo, Phys. Rev. Lett. 76, 161
(1996)), who considered two atomic condensates described by plane waves
propagating in opposite directions. We present an analytical argument for the
measurement-induced breaking of the relative phase symmetry in this system,
demonstrating how the phase gets localized after a large enough number of
detection events.Comment: 8 pages, 1 figur
Pairing without Superfluidity: The Ground State of an Imbalanced Fermi Mixture
Radio-frequency spectroscopy is used to study pairing in the normal and
superfluid phases of a strongly interacting Fermi gas with imbalanced spin
populations. At high spin imbalances the system does not become superfluid even
at zero temperature. In this normal phase full pairing of the minority atoms is
observed. This demonstrates that mismatched Fermi surfaces do not prevent
pairing but can quench the superfluid state, thus realizing a system of fermion
pairs that do not condense even at the lowest temperature
Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders.
Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristics of autism spectrum disorders. This clinical presentation occurred despite metabolic adaptations consisting of an increase in microvascular/glial GLUT1, neuronal GLUT8 and monocarboxylate transporter isoform 2 concentrations, with minimal to no change in brain glucose uptake but an increase in lactate uptake. Neuron-specific glucose deficiency has a negative impact on neurodevelopment interfering with functional competence. This is the first description of GLUT3 deficiency that forms a possible novel genetic mechanism for pervasive developmental disorders, such as the neuropsychiatric autism spectrum disorders, requiring further investigation in humans
Monolithic arrays of surface emitting laser NOR logic devices
Monolithic, cascadable, laser-logic-device arrays have been realized and characterized. The monolithic surface-emitting laser logic (SELL) device consists of an AlGaAs superlattice lasing around 780 nm connected to a heterojunction phototransistor (HPT) in parallel and a resistor in series. Arrays up to 8×8 have been fabricated, and 2×2 arrays show uniform characteristics. The optical logic output is switched off with 40 μW incident optical input
Faddeev calculation of pentaquark in the Nambu-Jona-Lasinio model-based diquark picture
A Bethe-Salpeter-Faddeev (BSF) calculation is performed for the pentaquark
in the diquark picture of Jaffe and Wilczek in which is a
diquark-diquark- three-body system. Nambu-Jona-Lasinio (NJL) model is
used to calculate the lowest order diagrams in the two-body scatterings of
and . With the use of coupling constants determined from the
meson sector, we find that interaction is attractive in s-wave
while interaction is repulsive in p-wave. With only the lowest three-body
channel considered, we do not find a bound pentaquark state.
Instead, a bound pentaquark with is obtained with a
unphysically strong vector mesonic coupling constants.Comment: 22 pages, 11 figures, accepted version in Phys. Rev. C. Summary of
main changes/corrections: 1. "which only holds at tree level" below the eq.
(23) is added. 2. In the last paragraph of p.23 we added a remark that the
coupling constant obtained from Lambda mass is different from the estimate as
obtained from the meson spectru
Monolithic arrays of surface emitting laser NOR logic devices
Monolithic, cascadable, laser-logic-device arrays have been realized and characterized. The monolithic surface-emitting laser logic (SELL) device consists of an AlGaAs superlattice lasing around 780 nm connected to a heterojunction phototransistor (HPT) in parallel and a resistor in series. Arrays up to 8×8 have been fabricated, and 2×2 arrays show uniform characteristics. The optical logic output is switched off with 40 μW incident optical input
Semiconducting-to-metallic photoconductivity crossover and temperature-dependent Drude weight in graphene
We investigated the transient photoconductivity of graphene at various
gate-tuned carrier densities by optical-pump terahertz-probe spectroscopy. We
demonstrated that graphene exhibits semiconducting positive photoconductivity
near zero carrier density, which crosses over to metallic negative
photoconductivity at high carrier density. Our observations are accounted for
by considering the interplay between photo-induced changes of both the Drude
weight and the carrier scattering rate. Notably, we observed multiple sign
changes in the temporal photoconductivity dynamics at low carrier density. This
behavior reflects the non-monotonic temperature dependence of the Drude weight,
a unique property of massless Dirac fermions
- …