32 research outputs found

    Blowup Criterion for the Compressible Flows with Vacuum States

    Full text link
    We prove that the maximum norm of the deformation tensor of velocity gradients controls the possible breakdown of smooth(strong) solutions for the 3-dimensional compressible Navier-Stokes equations, which will happen, for example, if the initial density is compactly supported \cite{X1}. More precisely, if a solution of the compressible Navier-Stokes equations is initially regular and loses its regularity at some later time, then the loss of regularity implies the growth without bound of the deformation tensor as the critical time approaches. Our result is the same as Ponce's criterion for 3-dimensional incompressible Euler equations (\cite{po}). Moreover, our method can be generalized to the full Compressible Navier-Stokes system which improve the previous results. In addition, initial vacuum states are allowed in our cases.Comment: 17 page

    Stability of Transonic Shock Solutions for One-Dimensional Euler-Poisson Equations

    Full text link
    In this paper, both structural and dynamical stabilities of steady transonic shock solutions for one-dimensional Euler-Poission system are investigated. First, a steady transonic shock solution with supersonic backgroumd charge is shown to be structurally stable with respect to small perturbations of the background charge, provided that the electric field is positive at the shock location. Second, any steady transonic shock solution with the supersonic background charge is proved to be dynamically and exponentially stable with respect to small perturbation of the initial data, provided the electric field is not too negative at the shock location. The proof of the first stability result relies on a monotonicity argument for the shock position and the downstream density, and a stability analysis for subsonic and supersonic solutions. The dynamical stability of the steady transonic shock for the Euler-Poisson equations can be transformed to the global well-posedness of a free boundary problem for a quasilinear second order equation with nonlinear boundary conditions. The analysis for the associated linearized problem plays an essential role

    A Blow-Up Criterion for Classical Solutions to the Compressible Navier-Stokes Equations

    Full text link
    In this paper, we obtain a blow up criterion for classical solutions to the 3-D compressible Naiver-Stokes equations just in terms of the gradient of the velocity, similar to the Beal-Kato-Majda criterion for the ideal incompressible flow. In addition, initial vacuum is allowed in our case.Comment: 25 page
    corecore