10 research outputs found

    Protective effect of EDTA preadministration on renal ischemia

    Get PDF
    BACKGROUND: Chelation therapy with sodium edetate (EDTA) improved renal function and slowed the progression of renal insufficiency in patients subjected to lead intoxication. This study was performed to identify the underlying mechanism of the ability of EDTA treatment to protect kidneys from damage. METHODS: The effects of EDTA administration were studied in a rat model of acute renal failure induced by 60 minutes ischemia followed or not by 60 minutes reperfusion. Renal ischemic damage was evaluated by histological studies and by functional studies, namely serum creatinine and blood urea nitrogen levels. Treatment with EDTA was performed 30 minutes before the induction of ischemia. Polymorphonuclear cell (PMN) adhesion capability, plasmatic nitric oxide (NO) levels and endothelial NO synthase (eNOS) renal expression were studied as well as the EDTA protection from the TNFα-induced vascular leakage in the kidneys. Data was compared by two-way analysis of variance followed by a post hoc test. RESULTS: EDTA administration resulted in the preservation of both functional and histological parameters of rat kidneys. PMN obtained from peripheral blood of EDTA-treated ischemized rats, displayed a significant reduction in the expression of the adhesion molecule Mac-1 with respect to controls. NO was significantly increased by EDTA administration and eNOS expression was higher and more diffuse in kidneys of rats treated with EDTA than in the controls. Finally, EDTA administration was able to prevent in vivo the TNFα-induced vascular leakage in the kidneys. CONCLUSION: This data provides evidence that EDTA treatment is able to protect rat kidneys from ischemic damage possibly through the stimulation of NO production

    Delayed Administration of Pyroglutamate Helix B Surface Peptide (pHBSP), a Novel Nonerythropoietic Analog of Erythropoietin, Attenuates Acute Kidney Injury

    Get PDF
    In preclinical studies, erythropoietin (EPO) reduces ischemia-reperfusion–associated tissue injury (for example, stroke, myocardial infarction, acute kidney injury, hemorrhagic shock and liver ischemia). It has been proposed that the erythropoietic effects of EPO are mediated by the classic EPO receptor homodimer, whereas the tissue-protective effects are mediated by a hetero-complex between the EPO receptor monomer and the β-common receptor (termed “tissue-protective receptor”). Here, we investigate the effects of a novel, selective-ligand of the tissue-protective receptor (pyroglutamate helix B surface peptide [pHBSP]) in a rodent model of acute kidney injury/dysfunction. Administration of pHBSP (10 μg/kg intraperitoneally [i.p.] 6 h into reperfusion) or EPO (1,000 IU/kg i.p. 4 h into reperfusion) to rats subjected to 30 min ischemia and 48 h reperfusion resulted in significant attenuation of renal and tubular dysfunction. Both pHBSP and EPO enhanced the phosphorylation of Akt (activation) and glycogen synthase kinase 3β (inhibition) in the rat kidney after ischemia-reperfusion, resulting in prevention of the activation of nuclear factor-κB (reduction in nuclear translocation of p65). Interestingly, the phosphorylation of endothelial nitric oxide synthase was enhanced by EPO and, to a much lesser extent, by pHBSP, suggesting that the signaling pathways activated by EPO and pHBSP may not be identical

    Rivaroxaban with or without aspirin in stable cardiovascular disease

    No full text
    BACKGROUND: We evaluated whether rivaroxaban alone or in combination with aspirin would be more effective than aspirin alone for secondary cardiovascular prevention. METHODS: In this double-blind trial, we randomly assigned 27,395 participants with stable atherosclerotic vascular disease to receive rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg once daily), rivaroxaban (5 mg twice daily), or aspirin (100 mg once daily). The primary outcome was a composite of cardiovascular death, stroke, or myocardial infarction. The study was stopped for superiority of the rivaroxaban-plus-aspirin group after a mean follow-up of 23 months. RESULTS: The primary outcome occurred in fewer patients in the rivaroxaban-plus-aspirin group than in the aspirin-alone group (379 patients [4.1%] vs. 496 patients [5.4%]; hazard ratio, 0.76; 95% confidence interval [CI], 0.66 to 0.86; P<0.001; z=−4.126), but major bleeding events occurred in more patients in the rivaroxaban-plus-aspirin group (288 patients [3.1%] vs. 170 patients [1.9%]; hazard ratio, 1.70; 95% CI, 1.40 to 2.05; P<0.001). There was no significant difference in intracranial or fatal bleeding between these two groups. There were 313 deaths (3.4%) in the rivaroxaban-plus-aspirin group as compared with 378 (4.1%) in the aspirin-alone group (hazard ratio, 0.82; 95% CI, 0.71 to 0.96; P=0.01; threshold P value for significance, 0.0025). The primary outcome did not occur in significantly fewer patients in the rivaroxaban-alone group than in the aspirin-alone group, but major bleeding events occurred in more patients in the rivaroxaban-alone group. CONCLUSIONS: Among patients with stable atherosclerotic vascular disease, those assigned to rivaroxaban (2.5 mg twice daily) plus aspirin had better cardiovascular outcomes and more major bleeding events than those assigned to aspirin alone. Rivaroxaban (5 mg twice daily) alone did not result in better cardiovascular outcomes than aspirin alone and resulted in more major bleeding events

    Glucose, Insulin, and the Kidney

    No full text

    Die erblich-konstitutionellen morphologischen Anomalien der Leukocyten

    No full text

    The role of platelets in acute kidney injury

    No full text
    corecore