216 research outputs found

    Incommensurate Spin Ordering and Fluctuations in underdoped La_{2-x}Ba_{x}CuO_{4}

    Full text link
    Using neutron scattering techniques, we have studied incommensurate spin ordering as well as low energy spin dynamics in single crystal underdoped \LBCO with x∼\sim0.095 and 0.08; high temperature superconductors with TC∼_C \sim 27 K and 29 K respectively. Static two dimensional incommensurate magnetic order appears below TN_N=39.5 ±\pm 0.3 K in \LBCO (x=0.095) and a similar temperature for x=0.08 within the low temperature tetragonal phase. The spin order is unaffected by either the onset of superconductivity or the application of magnetic fields of up to 7 Tesla applied along the c-axis in the x=0.095 sample. Such magnetic field {\it independent} behaviour is in marked contrast with the field induced enhancement of the staggered magnetisation observed in the related \LSCO system, indicating this phenomenon is not a universal property of cuprate superconductors. Surprisingly, we find that incommensurability δ\delta is only weakly dependent on doping relative to \LSCO. Dispersive excitations in \LBCO (x=0.095) at the same incommensurate wavevector persist up to at least 60 K. The dynamical spin susceptibility of the low energy spin excitations saturates below \tc, in a similar manner to that seen in the superconducting state of La2_2CuO4+y_{4+y}.Comment: 9 pages, 7 figures, submitted to PRB, figures update

    Scattering phase shift for relativistic exponential-type separable potentials

    Full text link
    The J-matrix method of scattering is used to obtain analytic expressions for the phase shift of two classes of relativistic exponential-type separable potentials whose radial component is either of the general form r^(n-1)exp(-r) or r^(2n)exp(-r^2), where n = 0, 1, or 2. The rank of these separable potentials is n + 1. The nonrelativistic limit is obtained and shown to be identical to the nonrelativistic phase shift. An exact numerical evaluation for higher order potentials (n > 2) can also be obtained in a simple way as illustrated for the case n = 3.Comment: Accepted for publication in J. Phys. A, to appear in January 2002. Replaced with a more portable PDF versio

    Fermentación controlada de aceitunas verdes picholine marroquíes sometidas a choque térmico e inoculadas sin sal

    Get PDF
    The present work reports the controlled fermentation of heat-shocked, unsalted and inoculated green olives. The effects of heat-shock (60, 70 and 80 °C three times for 5 min), inoculation with the oleuropeinolytic strain of L. plantarum FSO175 (L.p-FSO175) and the addition of Cell-Free Supernatant of C. pelliculosa L18 (CFS of C.p-L18) on the fermentation process of unsalted green olives were examined. The results showed a drastic reduction in the initial indigenous Enterobacteria, and an improvement in the acidification of heat-shocked olives at 70 and 80 °C, when compared to 60 °C. The inoculation with L.p-FSO175 and addition of CFS of C.p-L18 enhanced the fermentation and preservation of unsalted green olives, indicated by a significant decrease in pH, increase in free acidity and total disappearance of Enterobacteria. The heat-shock treatment at high temperature (80 °C), inoculation with L.p-FSO175 and addition of CFS of C.p-L18 led to the best reduction in bitterness, and favorable color changes (L, a, and b) in fermented olives. This sequential method led to more appreciated sensory characteristics (mainly bitterness and color) of fermented olives, lower spoilage incidence in olives, and reduced fermentation time to 50 days, and therefore may be suitable to control the fermentation of unsalted green olives of the Moroccan picholine variety.El presente trabajo reporta la fermentación controlada de aceitunas verdes sometidas a choque térmico, sin salar e inoculadas. Se estudian los efectos del choque térmico (60 °C, 70 °C y 80 °C tres veces durante 5 min), la inoculación con cepa oleuropeinolítica de L. plantarum FSO175 (L.p-FSO175) y la adición de sobrenadante libre de células de C. pelliculosa L18 (CFS de C.p-L18), sobre el proceso de fermentación de aceitunas verdes sin salar. Los resultados mostraron la drástica reducción de las enterobacterias autóctonas iniciales, y la mejora de la acidificación de las aceitunas sometidas a choque térmico de 70 °C y 80 °C, en comparación con 60 °C. La inoculación con L.p-FSO175 y la adición de CFS de C.p-L18 mejoró la fermentación y conservación de las aceitunas verdes sin salar, indicada por una disminución significativa del pH, aumento de la acidez libre y desaparición total de enterobacterias. El choque térmico a alta temperatura (80 °C), la inoculación con L.p-FSO175 y la adición de CFS de C.p-L18 condujeron a una mejor reducción del amargor y cambios de color favorables (L, a y b) en aceitunas fermentadas. Este método secuencial, que permitió apreciar las características sensoriales (principalmente amargor y color) de las aceitunas fermentadas, y una menor incidencia de deterioro en las aceitunas, y redujo el tiempo de fermentación a 50 días, puede ser adecuado para controlar la fermentación de aceitunas verdes sin salar de Marruecos, variedad picholine

    Two Dimensional Incommensurate and Three Dimensional Commensurate Magnetic Order and Fluctuations in La2−xBaxCuO4La_{2-x}Ba_{x}CuO_{4}

    Full text link
    We present neutron scattering measurements on single crystals of lightly doped La2−xBaxCuO4La_{2-x}Ba_{x}CuO_{4}, with 0≤x≤?0.0350 \leq x \leq? 0.035. These reveal the evolution of the magnetism in this prototypical doped Mott insulator from a three dimensional (3D) commensurate (C) antiferromagnetic ground state, which orders at a relatively high TN, to a two dimensional (2D) incommensurate (IC) ground state with finite ranged static correlations, which appear below a relatively low effective TN. At low temperatures, the 2D IC magnetism co-exists with the 3D C magnetism for doping concentrations as low as ? 0.0125. We find no signal of a 3D C magnetic ground state by x ∼\sim? 0.025, consistent with the upper limit of x ∼\sim? 0.02 observed in the sister family of doped Mott insulators, La2−xSrxCuO4La_{2-x}Sr_{x}CuO_{4}. The 2D IC ground states observed for 0.0125≤x≤0.0350.0125 \leq x \leq 0.035 are diagonal, and are rotated by 45 degrees within the orthorhombic basal plane compared with those previously reported for samples with superconducting ground states: La2−xBaxCuO4La_{2-x}Ba_{x}CuO_{4}, with $0.05 \leq? x \leq? 0.095. We construct a phase diagram based solely on magnetic order parameter measurements, which displays much of the complexity of standard high temperature superconductivity phase diagrams discussed in the literature. Analysis of high energy-resolution inelastic neutron scattering at moderately low temperatures shows a progressive depletion of the very low energy dynamic magnetic susceptibility as x increases from 0.0125 to 0.035. This low energy, dynamic susceptibility falls off? with increasing temperature on a scale much higher than the effective 2D IC TN appropriate to these materials. Appreciable dynamic 2D IC magnetic fluctuations inhabit much of the "pseudogap" regime of the phase diagram.Comment: 12 pages, 10 figure

    Co-existing Singlet and Ordered S=1/2 Moments in the Ground State of the Triclinic Quantum Magnet CuMoO4

    Full text link
    CuMoO4 is a triclinic quantum magnet based on S = 1/2 moments at the Cu2+ site. It has recently attracted interest due to the remarkable changes in its chromic and volumetric properties at high temperatures, and in its magnetic properties at low temperatures. This material exhibits a first order structural phase transition at T_C ~ 190 K as well as a magnetic phase transition at T_N ~ 1.75 K. We report low temperature heat capacity measurements as well as extensive elastic and inelastic neutron scattering measurements on powder samples taken above and below T_N. We observe neutron diffraction consistent with a simple (1/2, 0, 0) antiferromagnetic structure indicating a doubling of the a-axis periodicity below T_N. In addition, inelastic neutron scattering above a spin gap of ~ 2.3 meV is consistent with triplet excitations out of paired S = 1/2 moments which form singlet dimers. Low lying spin wave excitations are also observed and these originate from ordered S = 1/2 moments below T_N. Taken together these measurements show the ground state of CuMoO4 to display both non-magnetic singlets, and ferromagnetically-coupled spins coexisting within an antiferromagnetic structure below T_N ~ 1.75 K.Comment: 7 pages, 7 figure

    Magnetic Order and Fluctuations in the Presence of Quenched Disorder in the Kagome Staircase System (Co(1-x)Mg(x))3V2O8

    Full text link
    Co3V2O8 is an orthorhombic magnet in which S=3/2 magnetic moments reside on two crystallographically inequivalent Co2+ sites, which decorate a stacked, buckled version of the two dimensional kagome lattice, the stacked kagome staircase. The magnetic interactions between the Co2+ moments in this structure lead to a complex magnetic phase diagram at low temperature, wherein it exhibits a series of five transitions below 11 K that ultimately culminate in a simple ferromagnetic ground state below T~6.2 K. Here we report magnetization measurements on single and polycrystalline samples of (Co(1-x)Mg(x))3V2O8 for x<0.23, as well as elastic and inelastic neutron scattering measurements on single crystals of magnetically dilute (Co(1-x)Mg(x))3V2O8 for x=0.029 and x=0.194, in which non-magnetic Mg2+ ions substitute for magnetic Co2+. We find that a dilution of 2.9% leads to a suppression of the ferromagnetic transition temperature by ~15% while a dilution level of 19.4% is sufficient to destroy ferromagnetic long-range order in this material down to a temperature of at least 1.5 K. The magnetic excitation spectrum is characterized by two spin-wave branches in the ordered phase for (Co(1-x)Mg(x))3V2O8 (x=0.029), similar to that of the pure x=0 material, and by broad diffuse scattering at temperatures below 10 K in (Co(1-x)Mg(x))3V2O8 (x=0.194). Such a strong dependence of the transition temperatures to long range order in the presence of quenched non-magnetic impurities is consistent with two-dimensional physics driving the transitions. We further provide a simple percolation model that semi-quantitatively explains the inability of this system to establish long-range magnetic order at the unusually-low dilution levels which we observe in our experiments.Comment: 10 pages, 13 figure
    • …
    corecore