52 research outputs found
Dynamics of relaxor ferroelectrics
We study a dynamic model of relaxor ferroelectrics based on the spherical
random-bond---random-field model and the Langevin equations of motion. The
solution to these equations is obtained in the long-time limit where the system
reaches an equilibrium state in the presence of random local electric fields.
The complex dynamic linear and third-order nonlinear susceptibilities
and , respectively, are calculated as
functions of frequency and temperature. In analogy with the static case, the
dynamic model predicts a narrow frequency dependent peak in ,
which mimics a transition into a glass-like state.Comment: 15 pages, Revtex plus 5 eps figure
Monte Carlo Study of Relaxor Systems: A Minimum Model for Pb(InNb)O}
We examine a simple model for Pb(InNb)O (PIN), which
includes both long-range dipole-dipole interaction and random local anisotropy.
A improved algorithm optimized for long-range interaction has been applied for
efficient large-scale Monte Carlo simulation. We demonstrate that the phase
diagram of PIN is qualitatively reproduced by this minimum model. Some
properties characteristic of relaxors such as nano-scale domain formation, slow
dynamics and dispersive dielectric responses are also examined.Comment: 5 pages, 4 figure
Power-law correlations and orientational glass in random-field Heisenberg models
Monte Carlo simulations have been used to study a discretized Heisenberg
ferromagnet (FM) in a random field on simple cubic lattices. The spin variable
on each site is chosen from the twelve [110] directions. The random field has
infinite strength and a random direction on a fraction x of the sites of the
lattice, and is zero on the remaining sites. For x = 0 there are two phase
transitions. At low temperatures there is a [110] FM phase, and at intermediate
temperature there is a [111] FM phase. For x > 0 there is an intermediate phase
between the paramagnet and the ferromagnet, which is characterized by a
|k|^(-3) decay of two-spin correlations, but no true FM order. The [111] FM
phase becomes unstable at a small value of x. At x = 1/8 the [110] FM phase has
disappeared, but the power-law correlated phase survives.Comment: 8 pages, 12 Postscript figure
Ferroelectric and Dipolar Glass Phases of Non-Crystalline Systems
In a recent letter [Phys. Rev. Lett. {\bf 75}, 2360 (1996)] we briefly
discussed the existence and nature of ferroelectric order in positionally
disordered dipolar materials. Here we report further results and give a
complete description of our work. Simulations of randomly frozen and
dynamically disordered dipolar soft spheres are used to study ferroelectric
ordering in non-crystalline systems. We also give a physical interpretation of
the simulation results in terms of short- and long-range interactions. Cases
where the dipole moment has 1, 2, and 3 components (Ising, XY and XYZ models,
respectively) are considered. It is found that the Ising model displays
ferroelectric phases in frozen amorphous systems, while the XY and XYZ models
form dipolar glass phases at low temperatures. In the dynamically disordered
model the equations of motion are decoupled such that particle translation is
completely independent of the dipolar forces. These systems spontaneously
develop long-range ferroelectric order at nonzero temperature despite the
absence of any fined-tuned short-range spatial correlations favoring dipolar
order. Furthermore, since this is a nonequilibrium model we find that the
paraelectric to ferroelectric transition depends on the particle mass. For the
XY and XYZ models, the critical temperatures extrapolate to zero as the mass of
the particle becomes infinite, whereas, for the Ising model the critical
temperature is almost independent of mass and coincides with the ferroelectric
transition found for the randomly frozen system at the same density. Thus in
the infinite mass limit the results of the frozen amorphous systems are
recovered.Comment: 25 pages (LATEX, no macros). 11 POSTSCRIPT figures enclosed.
Submitted to Phisical Review E. Contact: [email protected]
Colossal dielectric constants in transition-metal oxides
Many transition-metal oxides show very large ("colossal") magnitudes of the
dielectric constant and thus have immense potential for applications in modern
microelectronics and for the development of new capacitance-based
energy-storage devices. In the present work, we thoroughly discuss the
mechanisms that can lead to colossal values of the dielectric constant,
especially emphasising effects generated by external and internal interfaces,
including electronic phase separation. In addition, we provide a detailed
overview and discussion of the dielectric properties of CaCu3Ti4O12 and related
systems, which is today's most investigated material with colossal dielectric
constant. Also a variety of further transition-metal oxides with large
dielectric constants are treated in detail, among them the system La2-xSrxNiO4
where electronic phase separation may play a role in the generation of a
colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in
the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator
Transitions and Ordering of Microscopic Degrees of Freedom
- …