17 research outputs found
Improving of the Generation Accuracy Forecasting of Photovoltaic Plants Based on k-Means and k-Nearest Neighbors Algorithms
Renewable energy sources (RES) are seen as a means of the fuel and energy complex carbon footprint reduction but the stochastic nature of generation complicates RES integration with electric power systems. Therefore, it is necessary to develop and improve methods for forecasting of the power plants generation using the energy of the sun, wind and water flows. One of the ways to improve the accuracy of forecast models is a deep analysis of meteorological conditions as the main factor affecting the power generation. In this paper, a method for adapting of forecast models to the meteorological conditions of photovoltaic stations operation based on machine learning algorithms was proposed and studied. In this case, unsupervised learning is first performed using the k-means method to form clusters. For this, it is also proposed to use studied the feature space dimensionality reduction algorithm to visualize and estimate the clustering accuracy. Then, for each cluster, its own machine learning model was trained for generation forecasting and the k-nearest neighbours algorithm was built to attribute the current conditions at the model operation stage to one of the formed clusters. The study was conducted on hourly meteorological data for the period from 1985 to 2021. A feature of the approach is the clustering of weather conditions on hourly rather than daily intervals. As a result, the mean absolute percentage error of forecasting is reduced significantly, depending on the prediction model used. For the best case, the error in forecasting of a photovoltaic plant generation an hour ahead was 9 %. Β© 2023 Belarusian National Technical University. All rights reserved
ΠΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ ΡΠΎΡΠΎΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π½ΡΠΈΠΉ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² k-ΡΡΠ΅Π΄Π½ΠΈΡ ΠΈ k-Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΡ ΡΠΎΡΠ΅Π΄Π΅ΠΉ
Renewable energy sources (RES) are seen as a means of the fuel and energy complex carbon footprint reduction but the stochastic nature of generation complicates RES integration with electric power systems. Therefore, it is necessary to develop and improve methods for forecasting of the power plants generation using the energy of the sun, wind and water flows. One of the ways to improve the accuracy of forecast models is a deep analysis of meteorological conditions as the main factor affecting the power generation. In this paper, a method for adapting of forecast models to the meteorological conditions of photovoltaic stations operation based on machine learning algorithms was proposed and studied. In this case, unsupervised learning is first performed using the k-means method to form clusters. For this, it is also proposed to use studied the feature space dimensionality reduction algorithm to visualize and estimate the clustering accuracy. Then, for each cluster, its own machine learning model was trained for generation forecasting and the k-nearest neighbours algorithm was built to attribute the current conditions at the model operation stage to one of the formed clusters. The study was conducted on hourly meteorological data for the period from 1985 to 2021. A feature of the approach is the clustering of weather conditions on hourly rather than daily intervals. As a result, the mean absolute percentage error of forecasting is reduced significantly, depending on the prediction model used. For the best case, the error in forecasting of a photovoltaic plant generation an hour ahead was 9 %.ΠΠΎΠ·ΠΎΠ±Π½ΠΎΠ²Π»ΡΠ΅ΠΌΡΠ΅ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΈ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ ΠΊΠ°ΠΊ ΡΡΠ΅Π΄ΡΡΠ²ΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ»Π΅Π΄Π° ΡΠΎΠΏΠ»ΠΈΠ²Π½ΠΎ-ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°, ΠΏΡΠΈ ΡΡΠΎΠΌ ΡΡΠΎΡ
Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ ΠΎΡΠ»ΠΎΠΆΠ½ΡΠ΅Ρ ΠΈΡ
ΠΈΠ½ΡΠ΅Π³ΡΠ°ΡΠΈΡ Ρ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΠΌΠΈ. ΠΡΠ° ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΡΡΡΠ΄Π½ΠΎΡΡΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»ΠΈΠ²Π°Π΅Ρ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΡΠΎΠ·Π΄Π°Π²Π°ΡΡ ΠΈ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°ΡΡ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ°Π½ΡΠΈΠΉ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΠΈΡ
ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠΎΠ»Π½ΡΠ°, Π²Π΅ΡΡΠ° ΠΈ Π²ΠΎΠ΄Π½ΡΡ
ΠΏΠΎΡΠΎΠΊΠΎΠ². ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½ΡΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠΈΠΌ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΎΠ³Π½ΠΎΠ·Π½ΡΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, ΡΠ²Π»ΡΠ΅ΡΡΡ Π³Π»ΡΠ±ΠΎΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅ΡΠ΅ΠΎΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΊΠ°ΠΊ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠΎΡΠ°, Π²Π»ΠΈΡΡΡΠ΅Π³ΠΎ Π½Π° Π²ΡΡΠ°Π±ΠΎΡΠΊΡ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ½Π΅ΡΠ³ΠΈΠΈ. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ ΠΌΠ΅ΡΠΎΠ΄ Π°Π΄Π°ΠΏΡΠ°ΡΠΈΠΈ ΠΏΡΠΎΠ³Π½ΠΎΠ·Π½ΡΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΏΠΎΠ΄ ΠΌΠ΅ΡΠ΅ΠΎΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠ°Π±ΠΎΡΡ ΡΠΎΡΠΎΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ°Π½ΡΠΈΠΉ Π½Π° Π±Π°Π·Π΅ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ. ΠΡΠΈΒ ΡΡΠΎΠΌ Π²Π½Π°ΡΠ°Π»Π΅ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ Π±Π΅Π· ΡΡΠΈΡΠ΅Π»Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ k-ΡΡΠ΅Π΄Π½ΠΈΡ
Π΄Π»Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΠ»Π°ΡΡΠ΅ΡΠΎΠ². ΠΠ»Ρ ΡΡΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Π΄Π»Ρ Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΊΠ»Π°ΡΡΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ. ΠΠ°ΡΠ΅ΠΌ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡΠ΅ΡΠ° ΠΏΠΎΡΡΡΠΎΠ΅Π½Π° ΡΠ²ΠΎΡ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ Π΄Π»Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΎΠ² ΠΈΒ Π°Π»Π³ΠΎΡΠΈΡΠΌ k-Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΡ
ΡΠΎΡΠ΅Π΄Π΅ΠΉ Π΄Π»Ρ ΠΎΡΠ½Π΅ΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΊΡΡΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ Π½Π° ΡΡΠ°ΠΏΠ΅ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡ ΠΈΠ· ΡΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΊΠ»Π°ΡΡΠ΅ΡΠΎΠ². ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π±ΡΠ»ΠΎ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π½Π° ΠΏΠΎΡΠ°ΡΠΎΠ²ΡΡ
ΠΌΠ΅ΡΠ΅ΠΎΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄Π°Π½Π½ΡΡ
Π·Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ Ρ 1985 ΠΏΠΎ 2021 Π³. ΠΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΡΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠ»Π°ΡΡΠ΅ΡΠΈΠ·Π°ΡΠΈΡ ΠΌΠ΅ΡΠ΅ΠΎΡΡΠ»ΠΎΠ²ΠΈΠΉ Π½Π° ΡΠ°ΡΠΎΠ²ΡΡ
, Π° Π½Π΅ ΡΡΡΠΎΡΠ½ΡΡ
ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π°Ρ
. ΠΒ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΡΠ΅Π΄Π½ΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈΠ±ΠΊΠΈ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ½ΠΈΠΆΠ°Π΅ΡΡΡ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡΒ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ. ΠΠ»Ρ Π½Π°ΠΈΠ»ΡΡΡΠ΅Π³ΠΎ Π²Π°ΡΠΈΠ°Π½ΡΠ° ΠΎΡΠΈΠ±ΠΊΠ° ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ ΡΠΎΡΠΎΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°Π½ΡΠΈΠΈ Π½Π° ΡΠ°Ρ Π²ΠΏΠ΅ΡΠ΅Π΄ ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° 9Β %