17 research outputs found

    Improving of the Generation Accuracy Forecasting of Photovoltaic Plants Based on k-Means and k-Nearest Neighbors Algorithms

    Get PDF
    Renewable energy sources (RES) are seen as a means of the fuel and energy complex carbon footprint reduction but the stochastic nature of generation complicates RES integration with electric power systems. Therefore, it is necessary to develop and improve methods for forecasting of the power plants generation using the energy of the sun, wind and water flows. One of the ways to improve the accuracy of forecast models is a deep analysis of meteorological conditions as the main factor affecting the power generation. In this paper, a method for adapting of forecast models to the meteorological conditions of photovoltaic stations operation based on machine learning algorithms was proposed and studied. In this case, unsupervised learning is first performed using the k-means method to form clusters. For this, it is also proposed to use studied the feature space dimensionality reduction algorithm to visualize and estimate the clustering accuracy. Then, for each cluster, its own machine learning model was trained for generation forecasting and the k-nearest neighbours algorithm was built to attribute the current conditions at the model operation stage to one of the formed clusters. The study was conducted on hourly meteorological data for the period from 1985 to 2021. A feature of the approach is the clustering of weather conditions on hourly rather than daily intervals. As a result, the mean absolute percentage error of forecasting is reduced significantly, depending on the prediction model used. For the best case, the error in forecasting of a photovoltaic plant generation an hour ahead was 9 %. Β© 2023 Belarusian National Technical University. All rights reserved

    ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ точности прогнозирования Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ фотоэлСктричСских станций Π½Π° основС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² k-срСдних ΠΈ k-Π±Π»ΠΈΠΆΠ°ΠΉΡˆΠΈΡ… сосСдСй

    Get PDF
    Renewable energy sources (RES) are seen as a means of the fuel and energy complex carbon footprint reduction but the stochastic nature of generation complicates RES integration with electric power systems. Therefore, it is necessary to develop and improve methods for forecasting of the power plants generation using the energy of the sun, wind and water flows. One of the ways to improve the accuracy of forecast models is a deep analysis of meteorological conditions as the main factor affecting the power generation. In this paper, a method for adapting of forecast models to the meteorological conditions of photovoltaic stations operation based on machine learning algorithms was proposed and studied. In this case, unsupervised learning is first performed using the k-means method to form clusters. For this, it is also proposed to use studied the feature space dimensionality reduction algorithm to visualize and estimate the clustering accuracy. Then, for each cluster, its own machine learning model was trained for generation forecasting and the k-nearest neighbours algorithm was built to attribute the current conditions at the model operation stage to one of the formed clusters. The study was conducted on hourly meteorological data for the period from 1985 to 2021. A feature of the approach is the clustering of weather conditions on hourly rather than daily intervals. As a result, the mean absolute percentage error of forecasting is reduced significantly, depending on the prediction model used. For the best case, the error in forecasting of a photovoltaic plant generation an hour ahead was 9 %.ВозобновляСмыС источники энСргии Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ срСдство сниТСния ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ слСда Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π½ΠΎ-энСргСтичСского комплСкса, ΠΏΡ€ΠΈ этом стохастичСский Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ослоТняСт ΠΈΡ… ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΡŽ с элСктроэнСргСтичСскими систСмами. Π­Ρ‚Π° сущСствСнная Ρ‚Ρ€ΡƒΠ΄Π½ΠΎΡΡ‚ΡŒ обусловливаСт Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ прогнозирования Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ элСктричСских станций, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰ΠΈΡ… ΡΠ½Π΅Ρ€Π³ΠΈΡŽ солнца, Π²Π΅Ρ‚Ρ€Π° ΠΈ Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ². НаиболСС Π²Π°ΠΆΠ½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ точности ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, являСтся Π³Π»ΡƒΠ±ΠΎΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· мСтСорологичСских условий ΠΊΠ°ΠΊ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°, Π²Π»ΠΈΡΡŽΡ‰Π΅Π³ΠΎ Π½Π° Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ элСктроэнСргии. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΈ исслСдован ΠΌΠ΅Ρ‚ΠΎΠ΄ Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΏΠΎΠ΄ мСтСорологичСскиС условия Ρ€Π°Π±ΠΎΡ‚Ρ‹ фотоэлСктричСских станций Π½Π° Π±Π°Π·Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² машинного обучСния. ΠŸΡ€ΠΈΒ ΡΡ‚ΠΎΠΌ Π²Π½Π°Ρ‡Π°Π»Π΅ выполняСтся ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π±Π΅Π· учитСля ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ k-срСдних для формирования кластСров. Для этой Π·Π°Π΄Π°Ρ‡ΠΈ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΠΈ исслСдовано использованиС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° пониТСния размСрности пространства ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² для Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ точности кластСризации. Π—Π°Ρ‚Π΅ΠΌ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ кластСра построСна своя модСль машинного обучСния для формирования ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΎΠ² ΠΈΒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ k-Π±Π»ΠΈΠΆΠ°ΠΉΡˆΠΈΡ… сосСдСй для отнСсСния Ρ‚Π΅ΠΊΡƒΡ‰ΠΈΡ… условий Π½Π° этапС эксплуатации ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΈΠ· сформированных кластСров. ИсслСдованиС Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π½Π° почасовых мСтСорологичСских Π΄Π°Π½Π½Ρ‹Ρ… Π·Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ с 1985 ΠΏΠΎ 2021 Π³. Одной ΠΈΠ· особСнностСй этого ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° являСтся кластСризация мСтСоусловий Π½Π° часовых, Π° Π½Π΅ суточных ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°Ρ…. Π’Β Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ срСдний ΠΌΠΎΠ΄ΡƒΠ»ΡŒ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ошибки прогнозирования сущСствСнно сниТаСтся Π² зависимости ΠΎΡ‚Β ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ прогнозирования. Для Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° ошибка прогнозирования Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ фотоэлСктричСской станции Π½Π° час Π²ΠΏΠ΅Ρ€Π΅Π΄ составила 9Β %
    corecore