900 research outputs found

    Lasing in circuit quantum electrodynamics with strong noise

    Full text link
    We study a model which can describe a superconducting single electron transistor (SSET) or a double quantum dot coupled to transmission-line oscillator. In both cases the degree of freedom is given by a charged particle, which couples strongly to the electromagnetic environment or phonons. We consider the case where a lasing condition is established and study the dependence of the average photon number in the resonator on the spectral function of the electromagnetic environment. We focus on three important cases: a strongly coupled environment with a small cut-off frequency, a structured environment peaked at a specific frequency and 1/f-noise. We find that the electromagnetic environment can have a substantial impact on the photon creation. Resonance peaks are in general broadened and additional resonances can appear

    Full Counting Statistics for Number of Electrons Dwelling in a Quantum Dot

    Get PDF

    Full counting statistics of information content

    Full text link
    We review connections between the cumulant generating function of full counting statistics of particle number and the R\'enyi entanglement entropy. We calculate these quantities based on the fermionic and bosonic path-integral defined on multiple Keldysh contours. We relate the R\'enyi entropy with the information generating function, from which the probability distribution function of self-information is obtained in the nonequilibrium steady state. By exploiting the distribution, we analyze the information content carried by a single bosonic particle through a narrow-band quantum communication channel. The ratio of the self-information content to the number of bosons fluctuates. For a small boson occupation number, the average and the fluctuation of the ratio are enhanced.Comment: 16 pages, 5 figure

    Kondo effect in quantum dots coupled to ferromagnetic leads

    Full text link
    We study the Kondo effect in a quantum dot which is coupled to ferromagnetic leads and analyse its properties as a function of the spin polarization of the leads. Based on a scaling approach we predict that for parallel alignment of the magnetizations in the leads the strong-coupling limit of the Kondo effect is reached at a finite value of the magnetic field. Using an equation-of-motion technique we study nonlinear transport through the dot. For parallel alignment the zero-bias anomaly may be split even in the absence of an external magnetic field. For antiparallel spin alignment and symmetric coupling, the peak is split only in the presence of a magnetic field, but shows a characteristic asymmetry in amplitude and position.Comment: 5 pages, 2 figure
    • …
    corecore