1,826 research outputs found

    Understanding different types of consumers: A multi-group analysis based on convenience food-related lifestyle

    Get PDF
    The primary objective of this study is to identify categories of organic food consumers based on the CFL (convenience food related lifestyle). Secondarily, this study explores characteristics, motivations/barriers in consumption and perception regarding to self-focus perception (such as perceived consequence of purchasing organic food) and altruistic behaviour (such as recycling behavior and perception of transportation) in different CFL. 1,262 valid samples are collected in this study. Moderate, convenience-pursuing and quality-pursuing categories are separated by cluster analysis. Consumer attitudes toward ready-made meals and takeaway meal solutions, perceived consequences of purchasing organic food, purchase frequency and quantity are differential, and the influence of organic food purchasing perception of consequence on altruistic behaviour are differences in CFL. Only consumers who purchase organic food motivated by environmental concerns are able to improve their recycling behavior. This study believes that the CFL framework has enhanced the understanding of consumer buying behavior and characteristics

    The effect of subgroup homogeneity of efficacy on contribution in public good dilemmas

    Get PDF
    open access articleThis paper examines how to maximize contribution in public good dilemmas by arranging people into homogeneous or heterogeneous subgroups. Past studies on the effect of homo- geneity of efficacy have exclusively manipulated group composition in their experimental designs, which might have imposed a limit on ecological validity because group membership may not be easily changed in reality. In this study, we maintained the same group composi- tion but varied the subgroup composition. We developed a public good dilemmas paradigm in which participants were assigned to one of the four conditions (high- vs. low-efficacy; homogeneous vs. heterogeneous subgroup) to produce their endowments and then to decide how much to contribute. We found that individuals in homogeneous and heteroge- neous subgroups produced a similar amount and proportion of contribution, which was due to the two mediating effects that counteracted each other, namely (a) perceived efficacy rel- ative to subgroup and (b) expectation of contribution of other subgroup members. This paper demonstrates both the pros and cons of arranging people into homogeneous and het- erogeneous subgroups of efficacy

    Distributed Training Large-Scale Deep Architectures

    Full text link
    Scale of data and scale of computation infrastructures together enable the current deep learning renaissance. However, training large-scale deep architectures demands both algorithmic improvement and careful system configuration. In this paper, we focus on employing the system approach to speed up large-scale training. Via lessons learned from our routine benchmarking effort, we first identify bottlenecks and overheads that hinter data parallelism. We then devise guidelines that help practitioners to configure an effective system and fine-tune parameters to achieve desired speedup. Specifically, we develop a procedure for setting minibatch size and choosing computation algorithms. We also derive lemmas for determining the quantity of key components such as the number of GPUs and parameter servers. Experiments and examples show that these guidelines help effectively speed up large-scale deep learning training

    Reference Architecture for Collaborative Design

    Get PDF
    Issues and themes of Collaborative Design (CD) addressed by research done so far are so extensive that when running a project of collaborative design, people may lack directions or guidelines to support the whole picture. Hence, developing reference architecture for CD is important and necessary in the academic and the empirical fields. Reference architecture provides the systematic, elementary skeleton and can be extended and adapted to diverse, changing environments. It also provides a comprehensive framework and enables practices implemented more thoroughly and easily. The reference architecture developed in this re-search is formed along three dimensions: decision aspect, design stage, and collaboration scope. There are five elements in the dimension of decision aspect: (1) participant, (2) product, (3) process, (4) organization, and (5) information. The dimension of design stage includes three stages: (1) planning and concepting, (2) system-level design and detail design, and (3) testing and prototyping. The dimension of collaboration scope includes three types of collaboration: (1) cross-functional, (2) cross-company, and (3) cross-industry. Because of the three reference dimensions, a cubic architecture is developed. The cubic reference architecture helps decision-makers in dealing with implementing a CD project or activity. It also serves as a guideline for CD system developers or people involved in the design collaboration to figure out their own responsibility functions and their relations with other members. Demonstration of how to use the reference architecture in developing design collaboration activities and specifying the details for cross-company CD is also provided in this research

    Chiral Lagrangians for Radiative Decays of Heavy Hadrons

    Full text link
    The radiative decays of heavy mesons and heavy baryons are studied in a formalism which incorporates both the heavy quark symmetry and the chiral symmetry. The chiral Lagrangians for the electromagnetic interactions of heavy hadrons consist of two pieces: one from gauging electromagnetically the strong-interaction chiral Lagrangian, and the other from the anomalous magnetic moment interactions of the heavy baryons and mesons. Due to the heavy quark spin symmetry, the latter contains only one independent coupling constant in the meson sector and two in the baryon sector. These coupling constants only depend on the light quarks and can be calculated in the nonrelativistic quark model. However, the charm quark is not heavy enough and the contribution from its magnetic moment must be included. Applications to the radiative decays DDγ , BBγ , ΞcΞcγ ,ΣcΛcγD^\ast \rightarrow D \gamma~,~B^\ast \rightarrow B \gamma~,~ \Xi^\prime_c \rightarrow \Xi_c \gamma~, \Sigma_c \rightarrow \Lambda_c \gamma and ΣcΛcπγ\Sigma_c \rightarrow \Lambda_c \pi \gamma are given. Together with our previous results on the strong decay rates of DDπD^\ast \rightarrow D \pi and ΣcΛcπ\Sigma_c \rightarrow \Lambda_c \pi, predictions are obtained for the total widths and branching ratios of DD^\ast and Σc\Sigma_c. The decays Σc+Λc+π0γ\Sigma^+_c \rightarrow \Lambda^+_c \pi^0 \gamma and Σc0Λc+πγ\Sigma^0_c \rightarrow \Lambda^+_c \pi^- \gamma are discussed to illustrate the important roles played by both the heavy quark symmetry and the chiral symmetry.Comment: 30 pages (one figure, available on request), CLNS 92/1158 and IP-ASTP-13-9

    Effective Lagrangian Approach to Weak Radiative Decays of Heavy Hadrons

    Full text link
    Motivated by the observation of the decay BˉKˉγ\bar{B}\to \bar{K}^*\gamma by CLEO, we have systematically analyzed the two-body weak radiative decays of bottom and charmed hadrons. There exist two types of weak radiative decays: One proceeds through the short-distance bsγb\to s\gamma transition and the other occurs through WW-exchange accompanied by a photon emission. Effective Lagrangians are derived for the WW-exchange bremsstrahlung processes at the quark level and then applied to various weak electromagnetic decays of heavy hadrons. Predictions for the branching ratios of Bˉ0D0γ, Λb0Σc0γ, Ξb0Ξc0γ\bar{B}^0\to D^{*0} \gamma,~\Lambda_b^0\to\Sigma_c^0\gamma,~\Xi_b^0\to \Xi_c^0\gamma and \Xi_b^0\to\xip_c^0\gamma are given. In particular, we found B(Bˉ0D0γ)0.9×106{\cal B}(\bar{B}^0 \to D^{*0}\gamma)\approx 0.9\times 10^{-6}. Order of magnitude estimates for the weak radiative decays of charmed hadrons:  D0Kˉ0γ, Λc+Σ+γ~D^0\to \bar{K}^{*0}\gamma,~\Lambda_c^+\to\Sigma^+\gamma and Ξc0Ξ0γ\Xi_c^0\to\Xi^0\gamma are also presented. Within this approach, the decay asymmetry for antitriplet to antitriplet heavy baryon weak radiative transitions is uniquely predicted by heavy quark symmetry. The electromagnetic penguin contribution to Λb0Λγ\Lambda_b^0\to\Lambda\gamma is estimated by two different methods and its branching ratio is found to be of order 1×1051\times 10^{-5}. We conclude that weak radiative decays of bottom hadrons are dominated by the short-distance bsγb\to s\gamma mechanism.Comment: 28 pages + 3 figures (not included), CLNS 94/1278, IP-ASTP-04-94. [Main changes in this revised version: (i) Sect 2 and subsection 4.1 are revised, (ii) A MIT bag method for calculating the decay rate of LambdabΛ+gammaLambda_b \to\Lambda+gamma is presented, (iii) All predictions are updated using the newly available 1994 Particle Data Group, and (iv) Appendix and subsections 3.3 and 4.4 are deleted.

    11.1: Invited Paper : Advances in Blue Phosphorescent Organic Light‐Emitting Devices

    Full text link
    This paper discusses the latest developments towards a commercial blue phosphorescent organic light emitting device (PHOLED™) technology. Progress towards achieving a high efficiency, long‐lived saturated blue PHOLED is discussed. First, a high efficiency (20% EQE, 45 cd/A), light blue (0.17, 0.39) PHOLED is presented. Next, long‐lived blue PHOLEDs having chromaticity co‐ordinates (0.17, 0.38) and (0.16, 0.29) are estimated to degrade to half their initial luminance of 200cd/m 2 after >100,000 hrs and 17,500 hrs, respectively. Finally, results from PHOLEDs designed to increase blue color saturation and lifetime are presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92011/1/1.2433213.pd

    Corrections to Chiral Dynamics of Heavy Hadrons: (I) 1/M Correction

    Full text link
    In earlier publications we have analyzed the strong and radiative decays of heavy hadrons in a formalism which incorporates both heavy-quark and chiral symmetries. In particular, we have derived a heavy-hadron chiral Lagrangian whose coupling constants are related by the heavy-quark flavor-spin symmetry arising from the QCD Lagrangian with infinitely massive quarks. In this paper, we re-examine the structure of the above chiral Lagrangian by including the effects of 1/mQ1/m_Q corrections in the heavy quark effective theory. The relations among the coupling constants, originally derived in the heavy-quark limit, are modified by heavy quark symmetry breaking interactions in QCD. Some of the implications are discussed.Comment: PHYZZX, 45 pages, 1 figure (not included), CLNS 93/1192, IP-ASTP-02-93, ITP-SB-93-0

    The GRB 071112C: A Case Study of Different Mechanisms in X-ray and Optical Temporal Evolution

    Get PDF
    We present the study on GRB 071112C X-ray and optical light curves. In these two wavelength ranges, we have found different temporal properties. The R-band light curve showed an initial rise followed by a single power-law decay, while the X-ray light curve was described by a single power-law decay plus a flare-like feature. Our analysis shows that the observed temporal evolution cannot be described by the external shock model in which the X-ray and optical emission are produced by the same emission mechanism. No significant color changes in multi-band light curves and a reasonable value of the initial Lorentz factor ({\Gamma}0 = 275 \pm 20) in a uniform ISM support the afterglow onset scenario as the correct interpretation for the early R-band rise. The result suggests the optical flux is dominated by afterglow. Our further investigations show that the X-ray flux could be created by an additional feature related to energy injection and X-ray afterglow. Different theoretical interpretations indicate the additional feature in X-ray can be explained by either late internal dissipation or local inverse-Compton scattering in the external shock.Comment: 20 pages, 3 figures, accepted for publication in Ap
    corecore