8 research outputs found

    X-ray Absorption Spectroscopy Study of Novel Inorganic-organic Hybrid Ferromagnetic Cupyz[M(CN)8]3\mathrm{Cu-pyz-[M(CN)_{8}]^{3-}} Assemblies

    No full text
    We present a unique interpretation of X-ray absorption spectroscopy (XAS) spectra at Cu:K, W:L(3), and Mo:K edges of structurally related magnetic Cu(II)-[M(V)(CN)(8)](3-) compounds. The approach results in description of the structure of novel three-dimensional (3-D) Cu(II)(3)(pyz)[M(V)(CN)(8)](2)·xH(2)O, M = W (1), Mo, (2) polymers. Assemblies 1 and 2 represent hybrid inorganic-organic compounds built of {Cu(II)[W(V)(CN)(8)](-)}(n) double-layers linked by cyanido-bridged {Cu(II)-(μ-pyz)(2+)}(n) chains. These Cu(II)-M(V) systems reveal long-range magnetic ordering with T(c) of 43 and 37 K for 1 and 2, respectively. The presence of the 3-D coordination networks and 8 cyanido-bridges at M(V) centers leads to the highest Curie temperatures and widest hysteresis loops among Cu(II)-[M(V)(CN)(8)](3-) systems

    Chiral (LH)2L2Cu3 trinuclear paramagnetic nodes in octacyanidometalate-bridged helical chains.

    No full text
    Trinuclear chiral (LH)2L2Cu3 (LH = 1,3-diamino-2-propanol, bdapH) assemblies linked by octacyanidometalate(IV) form isostructural one-dimensional (1D) chains consisting of right- and left-handed helixes arranged in an alternate manner: [(bdapH)2(bdap)2Cu(II)3][M(IV)(CN)8]*H2O (M = Mo 1, W 2). Each chain displays helicity with a long pitch around 17.2 Å. The direction of the helix rotation is strictly connected with the conformation of the (LH)2L2Cu3 unit. Right-handed helixes are based on Δ-S,S-(LH)2L2Cu3, whereas left-handed ones contain Λ-R,R-(LH)2L2Cu3 units. Magnetic studies reveal antiferromagnetic interactions through alkoxo-bridges inside trinuclear Cu(II) nodes leading to an ST = 1/2 ground state for both assemblies

    The role of interleukin-2 during homeostasis and activation of the immune system

    Full text link
    Interleukin-2 (IL-2) signals influence various lymphocyte subsets during differentiation, immune responses and homeostasis. As discussed in this Review, stimulation with IL-2 is crucial for the maintenance of regulatory T (T(Reg)) cells and for the differentiation of CD4(+) T cells into defined effector T cell subsets following antigen-mediated activation. For CD8(+) T cells, IL-2 signals optimize both effector T cell generation and differentiation into memory cells. IL-2 is presented in soluble form or bound to dendritic cells and the extracellular matrix. Use of IL-2 - either alone or in complex with particular neutralizing IL-2-specific antibodies - can amplify CD8(+) T cell responses or induce the expansion of the T(Reg) cell population, thus favouring either immune stimulation or suppression

    NK cell development, homeostasis and function: parallels with CD8+ T cells

    No full text
    corecore