584 research outputs found

    5-Hydroxytryptamine Modulates Migration, Cytokine and Chemokine Release and T-Cell Priming Capacity of Dendritic Cells In Vitro and In Vivo

    Get PDF
    Beside its well described role in the central and peripheral nervous system 5-hydroxytryptamine (5-HT), commonly known as serotonin, is also a potent immuno-modulator. Serotoninergic receptors (5-HTR) are expressed by a broad range of inflammatory cell types, including dendritic cells (DCs). In this study, we aimed to further characterize the immuno-biological properties of serotoninergic receptors on human monocyte-derived DCs. 5-HT was able to induce oriented migration in immature but not in LPS-matured DCs via activation of 5-HTR1 and 5-HTR2 receptor subtypes. Accordingly, 5-HT also increased migration of pulmonary DCs to draining lymph nodes in vivo. By binding to 5-HTR3, 5-HTR4 and 5-HTR7 receptors, 5-HT up-regulated production of the pro-inflammatory cytokine IL-6. Additionally, 5-HT influenced chemokine release by human monocyte-derived DCs: production of the potent Th1 chemoattractant IP-10/CXCL10 was inhibited in mature DCs, whereas CCL22/MDC secretion was up-regulated in both immature and mature DCs. Furthermore, DCs matured in the presence of 5-HT switched to a high IL-10 and low IL-12p70 secreting phenotype. Consistently, 5-HT favoured the outcome of a Th2 immune response both in vitro and in vivo. In summary, our study shows that 5-HT is a potent regulator of human dendritic cell function, and that targeting serotoninergic receptors might be a promising approach for the treatment of inflammatory disorders

    Measurement of the total cross section and ρ -parameter from elastic scattering in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF

    Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

    Get PDF

    Measurement of the total and differential Higgs boson production cross-sections at √s = 13 TeV with the ATLAS detector by combining the H → ZZ * → 4ℓ and H → γγ decay channels

    Get PDF
    The total and differential Higgs boson production cross-sections are measured through a combined statistical analysis of the H → ZZ * → 4ℓ and H → γγ decay channels. The results are based on a dataset of 139 fb −1 of proton–proton collisions at a centre-of-mass energy of 13 TeV, recorded by the ATLAS detector at the Large Hadron Collider. The measured total Higgs boson production cross-section is 55.5−3.8+4.0 pb, consistent with the Standard Model prediction of 55.6 ± 2.5 pb. All results from the two decay channels are compatible with each other, and their combination agrees with the Standard Model predictions. A combined statistical interpretation of the measured fiducial cross-sections as a function of the Higgs boson transverse momentum is performed in order to probe the Yukawa couplings to the bottom and charm quarks. A similar interpretation is performed by including also the constraints from the measurements of Higgs boson production in association with a W or Z boson in the H → bb¯ and cc¯ decay channels. [Figure not available: see fulltext.

    Searches for lepton-flavour-violating decays of the Higgs boson into eτ and μτ in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Abstract This paper presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy s s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. Leptonic (τ → ℓνℓντ) and hadronic (τ → hadrons ντ) decays of the τ-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, B B \mathcal{B} (H → eτ) < 0.20% (0.12%) and B B \mathcal{B} (H → μτ ) < 0.18% (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential H → eτ and H → μτ signals. The best-fit branching ratio difference, B B \mathcal{B} (H → μτ) → B B \mathcal{B} (H → eτ), measured with the Symmetry method in the channel where the τ-lepton decays to leptons, is (0.25 ± 0.10)%, compatible with a value of zero within 2.5σ

    Model-independent search for the presence of new physics in events including H → γγ with s \sqrt{s} = 13 TeV pp data recorded by the ATLAS detector at the LHC

    Get PDF
    Abstract A model-independent search for new physics leading to final states containing a Higgs boson, with a mass of 125.09 GeV, decaying to a pair of photons is performed with 139 fb−1 of s s \sqrt{s} = 13 TeV pp collision data recorded by the ATLAS detector at the Large Hadron Collider at CERN. This search examines 22 final states categorized by the objects that are produced in association with the Higgs boson. These objects include isolated electrons or muons, hadronically decaying τ-leptons, additional photons, missing transverse momentum, and hadronic jets, as well as jets that are tagged as containing a b-hadron. No significant excesses above Standard Model expectations are observed and limits on the production cross section at 95% confidence level are set. Detector efficiencies are reported for all 22 signal regions, which can be used to convert detector-level cross-section limits reported in this paper to particle-level cross-section constraints

    Search for pairs of muons with small displacements in pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    A search for new phenomena giving rise to pairs of opposite electrically charged muons with impact parameters in the millimeter range is presented, using 139 fb−1 of √s = 13 TeV pp collision data from the ATLAS detector at the LHC. The search targets the gap in coverage between existing searches targeting final states with leptons with large displacement and prompt leptons. No significant excess over the background expectation is observed and exclusion limits are set on the mass of long-lived scalar supersymmetric muon-partners (smuons) with much lower lifetimes than previously targeted by displaced muon searches. Smuon lifetimes down to 1 ps are excluded for a smuon mass of 100 GeV, and smuon masses up to 520 GeV are excluded for a proper lifetime of 10 ps, at 95% confidence level. Finally, model-independent limits are set on the contribution from new phenomena to the signal-region yield

    Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

    Get PDF
    Parton energy loss in the quark–gluon plasma (QGP) is studied with a measurement of photon-tagged jet production in 1.7 nb−1 of Pb+Pb data and 260 pb−1 of pp data, both at √sNN = 5.02 TeV, with the ATLAS detector. The process pp → γ +jet+X and its analogue in Pb+Pb collisions is measured in events containing an isolated photon with transverse momentum (pT) above 50 GeV and reported as a function of jet pT. This selection results in a sample of jets with a steeply falling pT distribution that are mostly initiated by the showering of quarks. The pp and Pb+Pb measurements are used to report the nuclear modification factor, RAA, and the fractional energy loss, Sloss, for photon-tagged jets. In addition, the results are compared with the analogous ones for inclusive jets, which have a significantly smaller quark-initiated fraction. The RAA and Sloss values are found to be significantly different between those for photon-tagged jets and inclusive jets, demonstrating that energy loss in the QGP is sensitive to the colour-charge of the initiating parton. The results are also compared with a variety of theoretical models of colour-charge-dependent energy loss
    corecore