994 research outputs found

    Theory of Orbital Ordering, Fluctuation and Resonant X-ray Scattering in Manganites

    Full text link
    A theory of resonant x-ray scattering in perovskite manganites is developed by applying the group theory to the correlation functions of the pseudospin operators for the orbital degree of freedom. It is shown that static and dynamical informations of the orbital state are directly obtained from the elastic, diffuse and inelastic scatterings due to the tensor character of the scattering factor. We propose that the interaction and its anisotropy between orbitals are directly identified by the intensity contour of the diffuse scattering in the momentum space.Comment: 4 pages, 1 figur

    Ferredoxin containing bacteriocins suggest a novel mechanism of iron uptake in <i>Pectobacterium spp</i>

    Get PDF
    In order to kill competing strains of the same or closely related bacterial species, many bacteria produce potent narrow-spectrum protein antibiotics known as bacteriocins. Two sequenced strains of the phytopathogenic bacterium &lt;i&gt;Pectobacterium carotovorum&lt;/i&gt; carry genes encoding putative bacteriocins which have seemingly evolved through a recombination event to encode proteins containing an N-terminal domain with extensive similarity to a [2Fe-2S] plant ferredoxin and a C-terminal colicin M-like catalytic domain. In this work, we show that these genes encode active bacteriocins, pectocin M1 and M2, which target strains of &lt;i&gt;Pectobacterium carotovorum&lt;/i&gt; and &lt;i&gt;Pectobacterium atrosepticum&lt;/i&gt; with increased potency under iron limiting conditions. The activity of pectocin M1 and M2 can be inhibited by the addition of spinach ferredoxin, indicating that the ferredoxin domain of these proteins acts as a receptor binding domain. This effect is not observed with the mammalian ferredoxin protein adrenodoxin, indicating that &lt;i&gt;Pectobacterium spp.&lt;/i&gt; carries a specific receptor for plant ferredoxins and that these plant pathogens may acquire iron from the host through the uptake of ferredoxin. In further support of this hypothesis we show that the growth of strains of &lt;i&gt;Pectobacterium carotovorum&lt;/i&gt; and &lt;i&gt;atrosepticum&lt;/i&gt; that are not sensitive to the cytotoxic effects of pectocin M1 is enhanced in the presence of pectocin M1 and M2 under iron limiting conditions. A similar growth enhancement under iron limiting conditions is observed with spinach ferrodoxin, but not with adrenodoxin. Our data indicate that pectocin M1 and M2 have evolved to parasitise an existing iron uptake pathway by using a ferredoxin-containing receptor binding domain as a Trojan horse to gain entry into susceptible cells

    Resonant X-ray Scattering in Manganites - Study of Orbital Degree of Freedom -

    Full text link
    Orbital degree of freedom of electrons and its interplay with spin, charge and lattice degrees of freedom are one of the central issues in colossal magnetoresistive manganites. The orbital degree of freedom has until recently remained hidden, since it does not couple directly to most of experimental probes. Development of synchrotron light sources has changed the situation; by the resonant x-ray scattering (RXS) technique the orbital ordering has successfully been observed . In this article, we review progress in the recent studies of RXS in manganites. We start with a detailed review of the RXS experiments applied to the orbital ordered manganites and other correlated electron systems. We derive the scattering cross section of RXS where the tensor character of the atomic scattering factor (ASF) with respect to the x-ray polarization is stressed. Microscopic mechanisms of the anisotropic tensor character of ASF is introduced and numerical results of ASF and the scattering intensity are presented. The azimuthal angle scan is a unique experimental method to identify RXS from the orbital degree of freedom. A theory of the azimuthal angle and polarization dependence of the RXS intensity is presented. The theoretical results show good agreement with the experiments in manganites. Apart from the microscopic description of ASF, a theoretical framework of RXS to relate directly to the 3d orbital is presented. The scattering cross section is represented by the correlation function of the pseudo-spin operator for the orbital degree of freedom. A theory is extended to the resonant inelastic x-ray scattering and methods to observe excitations of the orbital degree of freedom are proposed.Comment: 47 pages, 24 figures, submitted to Rep. Prog. Phy

    Electron Spin Decoherence in Bulk and Quantum Well Zincblende Semiconductors

    Full text link
    A theory for longitudinal (T1) and transverse (T2) electron spin coherence times in zincblende semiconductor quantum wells is developed based on a non-perturbative nanostructure model solved in a fourteen-band restricted basis set. Distinctly different dependences of coherence times on mobility, quantization energy, and temperature are found from previous calculations. Quantitative agreement between our calculations and measurements is found for GaAs/AlGaAs, InGaAs/InP, and GaSb/AlSb quantum wells.Comment: 11 pages, 3 figure

    Spin relaxation in (110) and (001) InAs/GaSb superlattices

    Full text link
    We report an enhancement of the electron spin relaxation time (T1) in a (110) InAs/GaSb superlattice by more than an order of magnitude (25 times) relative to the corresponding (001) structure. The spin dynamics were measured using polarization sensitive pump probe techniques and a mid-infrared, subpicosecond PPLN OPO. Longer T1 times in (110) superlattices are attributed to the suppression of the native interface asymmetry and bulk inversion asymmetry contributions to the precessional D'yakonov Perel spin relaxation process. Calculations using a nonperturbative 14-band nanostructure model give good agreement with experiment and indicate that possible structural inversion asymmetry contributions to T1 associated with compositional mixing at the superlattice interfaces may limit the observed spin lifetime in (110) superlattices. Our findings have implications for potential spintronics applications using InAs/GaSb heterostructures.Comment: 4 pages, 2 figure

    Dynamics of metallic stripes in cuprates

    Full text link
    We study the dynamics of metallic vertical stripes in cuprates within the three-band Hubbard model based on a recently developed time dependent Gutzwiller approximation. As doping increases the optical conductivity shows transfer of spectral weight from the charge transfer band towards i) an incoherent band centered at 1.3eV, {ii} a Drude peak, mainly due to motion along the stripe, {iii} a low energy collective mode which softens with doping and merges with ii} at optimum doping in good agreement with experiment. The softening is related to the quasidegeneracy between Cu centered and O centered mean-field stripe solutions close to optimal doping.Comment: 4 pages, 5 figures, corrections to Fig.

    Varus inclination of the proximal tibia or the distal femur does not influence high tibial osteotomy outcome

    Get PDF
    We have analysed retrospectively the influence of different sources of knee deformity on failure of closing wedge high tibial valgus osteotomy (HTO). Preoperative frontal plane varus deformities of the lower extremity, distal femur and proximal tibia, and medial convergence of the knee joint line were assessed on a standard whole leg radiograph in 76 patients. Using the logistic regression model, the probability of survival for HTO was 77% (SD 4%) at 10-years follow-up. Varus deformity of the lower extremity ( 3 degrees ) were identified as preoperative risk factors for conversion to arthroplasty (P = 0.03 and P = 0.006). We found no evidence that varus inclination of the proximal tibia or distal femur influences long-term survival of HTO

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    Intersubband spin-density excitations in quantum wells with Rashba spin splitting

    Get PDF
    In inversion-asymmetric semiconductors, spin-orbit coupling induces a k-dependent spin splitting of valence and conduction bands, which is a well-known cause for spin decoherence in bulk and heterostructures. Manipulating nonequilibrium spin coherence in device applications thus requires understanding how valence and conduction band spin splitting affects carrier spin dynamics. This paper studies the relevance of this decoherence mechanism for collective intersubband spin-density excitations (SDEs) in quantum wells. A density-functional formalism for the linear spin-density matrix response is presented that describes SDEs in the conduction band of quantum wells with subbands that may be non-parabolic and spin-split due to bulk or structural inversion asymmetry (Rashba effect). As an example, we consider a 40 nm GaAs/AlGaAs quantum well, including Rashba spin splitting of the conduction subbands. We find a coupling and wavevector-dependent splitting of the longitudinal and transverse SDEs. However, decoherence of the SDEs is not determined by subband spin splitting, due to collective effects arising from dynamical exchange and correlation.Comment: 10 pages, 4 figure
    corecore