479 research outputs found
Ising-like Spin Anisotropy and Competing Antiferromagnetic - Ferromagnetic Orders in GdBaCo_{2}O_{5.5} Single Crystals
In RBaCo_{2}O_{5+x} compounds (R is rare earth), a
ferromagnetic-antiferromagnetic competition is accompanied by a giant
magnetoresistance. We study the magnetization of detwinned GdBaCo_{2}O_{5.5}
single crystals, and find a remarkable uniaxial anisotropy of Co^{3+} spins
which is tightly linked with the chain oxygen ordering in GdO_{0.5} planes.
Reflecting the underlying oxygen order, CoO_2 planes also develop a spin-state
order consisting of Co^{3+} ions in alternating rows of S=1 and S=0 states. The
magnetic structure appears to be composed of weakly coupled ferromagnetic
ladders with Ising-like moments, which gives a simple picture for
magnetotransport phenomena.Comment: 5 pages, 4 figures, accepted to Phys.Rev.Let
Transport and magnetic properties of GdBaCo_{2}O_{5+x} single crystals: A cobalt oxide with square-lattice CoO_2 planes over a wide range of electron and hole doping
Single crystals of the layered perovskite GdBaCo_{2}O_{5+x} (GBCO) have been
grown by the floating-zone method, and their transport, magnetic, and
structural properties have been studied in detail over a wide range of oxygen
contents. The obtained data are used to establish a rich phase diagram centered
at the "parent'' compound GdBaCo_{2}O_{5.5} -- an insulator with Co ions in the
3+ state. An attractive feature of GBCO is that it allows a precise and
continuous doping of CoO_{2} planes with either electrons or holes, spanning a
wide range from the charge-ordered insulator at 50% electron doping (x=0) to
the undoped band insulator (x=0.5), and further towards the heavily hole-doped
metallic state. This continuous doping is clearly manifested in the behavior of
thermoelectric power which exhibits a spectacular divergence with approaching
x=0.5, where it reaches large absolute values and abruptly changes its sign. At
low temperatures, the homogeneous distribution of doped carriers in GBCO
becomes unstable, and both the magnetic and transport properties point to an
intriguing nanoscopic phase separation. We also find that throughout the
composition range the magnetic behavior in GBCO is governed by a delicate
balance between ferromagnetic (FM) and antiferromagnetic (AF) interactions,
which can be easily affected by temperature, doping, or magnetic field,
bringing about FM-AF transitions and a giant magnetoresistance (MR) phenomenon.
An exceptionally strong uniaxial anisotropy of the Co spins, which dramatically
simplifies the possible spin arrangements, together with the possibility of
continuous ambipolar doping turn GBCO into a model system for studying the
competing magnetic interactions, nanoscopic phase separation and accompanying
magnetoresistance phenomena.Comment: 31 pages, 32 figures, submitted to Phys. Rev.
Spin-Orbit Coupling and Anomalous Angular-Dependent Magnetoresistance in the Quantum Transport Regime of PbS
We measured magnetotransport properties of PbS single crystals which exhibit
the quantum linear magnetoresistance (MR) as well as the static skin effect
that creates a surface layer of additional conductivity. The Shubnikov-de Haas
oscillations in the longitudinal MR signify the peculiar role of spin-orbit
coupling. In the angular-dependent MR, sharp peaks are observed when the
magnetic field is slightly inclined from the longitudinal configuration, which
is totally unexpected for a system with nearly spherical Fermi surface and
points to an intricate interplay between the spin-orbit coupling and the
conducting surface layer in the quantum transport regime.Comment: 5 pages, 5 figure
Topological surface transport in epitaxial SnTe thin films grown on Bi₂Te₃
The topological crystalline insulator SnTe has been grown epitaxially on a Bi₂Te₃ buffer layer by molecular beam epitaxy. In a 30-nm-thick SnTe film, p- and n-type carriers are found to coexist, and Shubnikov–de Haas oscillation data suggest that the n-type carriers are Dirac fermions residing on the SnTe (111) surface. This transport observation of the topological surface state in a p-type topological crystalline insulator became possible due to a downward band bending on the free SnTe surface, which appears to be of intrinsic origin
Room-temperature ferromagnetism in Sr_(1-x)Y_xCoO_(3-delta) (0.2 < x < 0.25)
We have measured magnetic susceptibility and resistivity of
SrYCoO ( 0.1, 0.15, 0.2, 0.215, 0.225, 0.25, 0.3,
and 0.4), and have found that SrYCoO is a room
temperature ferromagnet with a Curie temperature of 335 K in a narrow
compositional range of 0.2 0.25. This is the highest transition
temperature among perovskite Co oxides. The saturation magnetization for
0.225 is 0.25 /Co at 10 K, which implies that the observed
ferromagnetism is a bulk effect. We attribute this ferromagnetism to a peculiar
Sr/Y ordering.Comment: 5 pages, 4 figure
Ultra-low carrier concentration and surface dominant transport in Sb-doped Bi2Se3 topological insulator nanoribbons
A topological insulator is a new state of matter, possessing gapless
spin-locking surface states across the bulk band gap which has created new
opportunities from novel electronics to energy conversion. However, the large
concentration of bulk residual carriers has been a major challenge for
revealing the property of the topological surface state via electron transport
measurement. Here we report surface state dominated transport in Sb-doped
Bi2Se3 nanoribbons with very low bulk electron concentrations. In the
nanoribbons with sub-10nm thickness protected by a ZnO layer, we demonstrate
complete control of their top and bottom surfaces near the Dirac point,
achieving the lowest carrier concentration of 2x10^11/cm2 reported in
three-dimensional (3D) topological insulators. The Sb-doped Bi2Se3
nanostructures provide an attractive materials platform to study fundamental
physics in topological insulators, as well as future applications.Comment: 5 pages, 4 figures, 1 tabl
Topological crystalline insulator states in Pb(1-x)Sn(x)Se
Topological insulators are a novel class of quantum materials in which
time-reversal symmetry, relativistic (spin-orbit) effects and an inverted band
structure result in electronic metallic states on the surfaces of bulk
crystals. These helical states exhibit a Dirac-like energy dispersion across
the bulk bandgap, and they are topologically protected. Recent theoretical
proposals have suggested the existence of topological crystalline insulators, a
novel class of topological insulators in which crystalline symmetry replaces
the role of time-reversal symmetry in topological protection [1,2]. In this
study, we show that the narrow-gap semiconductor Pb(1-x)Sn(x)Se is a
topological crystalline insulator for x=0.23. Temperature-dependent
magnetotransport measurements and angle-resolved photoelectron spectroscopy
demonstrate that the material undergoes a temperature-driven topological phase
transition from a trivial insulator to a topological crystalline insulator.
These experimental findings add a new class to the family of topological
insulators. We expect these results to be the beginning of both a considerable
body of additional research on topological crystalline insulators as well as
detailed studies of topological phase transitions.Comment: v2: published revised manuscript (6 pages, 3 figures) and
supplementary information (5 pages, 8 figures
Synchronization of multi-phase oscillators: An Axelrod-inspired model
Inspired by Axelrod's model of culture dissemination, we introduce and
analyze a model for a population of coupled oscillators where different levels
of synchronization can be assimilated to different degrees of cultural
organization. The state of each oscillator is represented by a set of phases,
and the interaction --which occurs between homologous phases-- is weighted by a
decreasing function of the distance between individual states. Both ordered
arrays and random networks are considered. We find that the transition between
synchronization and incoherent behaviour is mediated by a clustering regime
with rich organizational structure, where some of the phases of a given
oscillator can be synchronized to a certain cluster, while its other phases are
synchronized to different clusters.Comment: 6 pages, 5 figure
Quantum magneto-optics of graphite family
The optical conductivity of graphene, bilayer graphene, and graphite in
quantizing magnetic fields is studied. Both dynamical conductivities,
longitudinal and Hall's, are analytically evaluated. The conductivity peaks are
explained in terms of electron transitions. We have shown that trigonal warping
can be considered within the perturbation theory for strong magnetic fields
larger than 1 T and in the semiclassical approach for weak fields when the
Fermi energy is much larger than the cyclotron frequency. The main optical
transitions obey the selection rule with \Deltan = 1 for the Landau number n,
however the \Deltan = 2 transitions due to the trigonal warping are also
possible. The Faraday/Kerr rotation and light transmission/reflection in the
quantizing magnetic fields are calculated. Parameters of the
Slonczewski-Weiss-McClure model are used in the fit taking into account the
previous dHvA measurements and correcting some of them for the case of strong
magnetic fields.Comment: 28 pages, 12 figures. arXiv admin note: text overlap with
arXiv:1106.340
- …
