167 research outputs found

    Band Calculation for Ce-compounds on the basis of Dynamical Mean Field Theory

    Full text link
    The band calculation scheme for ff electron compounds is developed on the basis of the dynamical mean field theory (DMFT) and the LMTO method. The auxiliary impurity problem is solved by a method named as NCAf2f^{2}v', which includes the correct exchange process of the f1→f2f^{1} \to f^{2} virtual excitation as the vertex correction to the non-crossing approximation (NCA) for the f1→f0f^{1} \to f^{0} fluctuation. This method leads to the correct magnitude of the Kondo temperature, TKT_{\rm K}, and makes it possible to carry out quantitative DMFT calculation including the crystalline field (CF) and the spin-orbit (SO) splitting of the self-energy. The magnetic excitation spectra are also calculated to estimate TKT_{\rm K}. It is applied to Ce metal and CeSb at T=300 K as the first step. In Ce metal, the hybridization intensity (HI) just below the Fermi energy is reduced in the DMFT band. The photo-emission spectra (PES) have a conspicuous SO side peak, similar to that of experiments. TKT_{\rm K} is estimated to be about 70 K in γ\gamma-Ce, while to be about 1700 K in α\alpha-Ce. In CeSb, the double-peak-like structure of PES is reproduced. In addition, TKT_{\rm K} which is not so low is obtained because HI is enhanced just at the Fermi energy in the DMFT band.Comment: 30pages, 18 figure

    Effects of parity and season on pregnancy rates to Japanese Black beef cattle

    Get PDF
    Repeat-breeder (RB) cows are a major source of economic waste due to their decreased fertility. Embryo transfer (ET) is an alternative tool to improve the fertility of RB cows. The aims of the present study were to evaluate the effects of recipient parity and the season on pregnancy rates following ET in RB Japanese Black beef cattle. Embryos were transferred nonsurgically to recipients, consisting of 155 heifers (< 2 years old) and 172 cows (< 8 years old), which were defined as RB cattle. Of the recipients that were presented for ET, 57 recipients received a fresh embryo and 270 recipients received a frozen embryo. There were no differences in the pregnancy rates between cattle that received fresh embryos or frozen embryos. The rates of recipients with pregnancy, abortion, stillbirth, and normal calving were similar between heifers and cows. In cows, the pregnancy rates were lower (P < 0.05) in summer (June to August) than in spring (March to May) and winter (December to February). In heifers, however, there were no differences in the pregnancy rates among the seasons. Our findings indicate that in RB Japanese Black beef cattle, the parity of the recipients does not have an effect on the pregnancy rates following the transfer of fresh and frozen embryos. However, heat stress may affect reproductive performance in RB Japanese Black cows

    Electroacupuncture activates corticotrophin-releasing hormone-containing neurons in the paraventricular nucleus of the hypothalammus to alleviate edema in a rat model of inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies show that electroacupuncture (EA) has beneficial effects in patients with inflammatory diseases. This study investigated the mechanisms of EA anti-inflammation, using a rat model of complete Freund's adjuvant (CFA)-induced hind paw inflammation and hyperalgesia.</p> <p>Design</p> <p>Four experiments were conducted on male Sprague-Dawley rats (n = 6–7/per group). Inflammation was induced by injecting CFA into the plantar surface of one hind paw. Experiment 1 examined whether EA increases plasma adrenocorticotropic hormone (ACTH) levels. Experiments 2 and 3 studied the effects of the ACTH and corticotropin-releasing hormone (CRH) receptor antagonists, ACTH<sub>(11–24) </sub>and astressin, on the EA anti-edema. Experiment 4 determined whether EA activates CRH neurons in the paraventricular nucleus of the hypothalammus. EA treatment, 10 Hz at 3 mA and 0.1 ms pulse width, was given twice for 20 min each, once immediately post and again 2 hr post-CFA. Plasma ACTH levels, paw thickness, and paw withdrawal latency to a noxious thermal stimulus were measured 2 h and 5 h after the CFA.</p> <p>Results</p> <p>EA significantly increased ACTH levels 5 h (2 folds) after CFA compared to sham EA control, but EA alone in naive rats and CFA alone did not induce significant increases in ACTH. ACTH<sub>(11–24) </sub>and astressin blocked EA anti-edema but not EA anti-hyperalgesia. EA induced phosphorylation of NR1, an essential subunit of the N-methyl-D-aspartic acid (NMDA) receptor, in CRH-containing neurons of the paraventricular nucleus.</p> <p>Conclusion</p> <p>The data demonstrate that EA activates CRH neurons to significantly increase plasma ACTH levels and suppress edema through CRH and ACTH receptors in a rat model of inflammation.</p

    Maturation and fertilisation of sheep oocytes cultured in serum-free medium containing silk protein sericin

    Get PDF
    Sericin is a water-soluble component of silk and has been used as a biomaterial due to its antibacterial and ultraviolet radiation-resistant properties. This study was designed to evaluate the effect of sericin supplementation in a maturation medium on the meiotic competence and fertilisability of sheep oocytes. Cumulus-oocyte complexes (COCs) were cultured in TCM199 supplemented with sericin at various concentrations of 0 (control), 0.1, 0.25 and 0.5%, either with or without bovine serum albumin (BSA). When the COCs were matured without BSA, the supplementation of 0.1% sericin significantly increased the rates of maturation to metaphase II and the total fertilisation of oocytes compared with the other concentrations of sericin. When the COCs were matured with BSA, the beneficial effects of 0.1% sericin supplementation on the maturation and fertilisation of oocytes were not observed. Our findings indicate that supplementation with 0.1% sericin during maturation culture may improve the nuclear maturation and fertilisability of sheep oocytes. Moreover, it may be possible to replace BSA with sericin in chemically defined media without the risk of disease transmission

    Starvation Induced Cell Death in Autophagy-Defective Yeast Mutants Is Caused by Mitochondria Dysfunction

    Get PDF
    Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg) mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT) cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species) scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA). We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants

    Caspase involvement in autophagy

    Get PDF
    Caspases are a family of cysteine proteases widely known as the principal mediators of the apoptotic cell death response, but considerably less so as the contributors to the regulation of pathways outside cellular demise. In regards to autophagy, the modulatory roles of caspases have only recently begun to be adequately described. In contrast to apoptosis, autophagy promotes cell survival by providing energy and nutrients through the lysosomal degradation of cytoplasmic constituents. Under basal conditions autophagy and apoptosis cross-regulate each other through an elaborate network of interconnections which also includes the interplay between autophagyrelated proteins (ATGs) and caspases. In this review we focus on the effects of this crosstalk at the cellular level, as we aim to concentrate the main observations from research conducted so far on the fine-tuning of autophagy by caspases. Several members of this protease-family have been found to directly interact with key ATGs involved in different tiers across the autophagic cascade. Therefore, we firstly outline the core mechanism of macroautophagy in brief. In an effort to emphasize the importance of the intricate cross-regulation of ATGs and caspases, we also present examples drawn from Drosophila and plant models regarding the contribution of autophagy to apoptotic cell death during normal development
    • …
    corecore