76,077 research outputs found

    Discussion on `Characterization of 1-3 piezoelectric polymer composites - a numerical and analytical evaluation procedure for thickness mode vibrations' by C.V. Madhusudhana Rao, G. Prasad, Condens. Matter Phys., 2010, Vol.13, No.1, 13703

    Full text link
    In the paper entitled "Characterization of 1-3 piezoelectric polymer composites - a numerical and analytical evaluation procedure for thickness mode vibrations", the dependence of the thickness electromechanical coupling coefficient on the aspect ratio of piezoceramic fibers is studied by finite element simulation for various volume fractions of piezoceramic fibers in a 1-3 composite. The accuracy of the results is questionable because the boundary condition claiming that `predefined displacements are applied perpendicularly on C+C^+ plane on all nodes' is not suitable for the analysis of 1-3 composite with comparatively large aspect ratio from 0.2 to 1. A discussion regarding this problem and the suggested corrections are presented in this paper.Comment: 4 pages, 3 figure

    Adiabatic passage of collective excitations in atomic ensembles

    Full text link
    We describe a theoretical scheme that allows for transfer of quantum states of atomic collective excitation between two macroscopic atomic ensembles localized in two spatially-separated domains. The conception is based on the occurrence of double-exciton dark states due to the collective destructive quantum interference of the emissions from the two atomic ensembles. With an adiabatically coherence manipulation for the atom-field couplings by stimulated Ramann scattering, the dark states will extrapolate from an exciton state of an ensemble to that of another. This realizes the transport of quantum information among atomic ensembles.Comment: 7 pages, 2 figure

    Coronal magnetic topology and the production of solar impulsive energetic electrons

    Full text link
    We investigate two candidate solar sources or active regions (ARs) in association with a solar impulsive energetic electron (SIEE) event on 2002 October 20. The solar particle release (SPR) times of SIEEs are derived by using their velocity dispersion with consideration of the instrumental effect. It is found that there are double electron injections at the Sun. The low-energy (<13 keV) electron injection coincides with a C6.6 flare in AR10154 and is accompanied with prominent type III radio bursts rather than a stronger M1.8 flare in AR10160. The M1.8 flare produces, however, faint type III radio bursts. Whereas electrons of 25 to 300 keV are released 9 min later when a jet-like CME travels to 2.6 solar radii. We further examine the coronal magnetic configurations above the two ARs based on the potential field source surface (PFSS) model. It is found that open field lines, rooted in AR10154 and well connected to the Earth, provide escaping channels for energetic electrons. Only a small portion of magnetic fields are opened above AR10160, being responsible for the faint type III radio bursts. These lines are, however, not well connected, making it impossible for SIEEs detection by near-Earth spacecraft. The results appear to establish a physical link between coronal magnetic topology, formation of type III radio bursts, and production of SIEEs.Comment: A&A Letters, accepte

    Microscopic Description of Band Structure at Very Extended Shapes in the A ~ 110 Mass Region

    Full text link
    Recent experiments have confirmed the existence of rotational bands in the A \~ 110 mass region with very extended shapes lying between super- and hyper-deformation. Using the projected shell model, we make a first attempt to describe quantitatively such a band structure in 108Cd. Excellent agreement is achieved in the dynamic moment of inertia J(2) calculation. This allows us to suggest the spin values for the energy levels, which are experimentally unknown. It is found that at this large deformation, the sharply down-sloping orbitals in the proton i_{13/2} subshell are responsible for the irregularity in the experimental J(2), and the wave functions of the observed states have a dominant component of two-quasiparticles from these orbitals. Measurement of transition quadrupole moments and g-factors will test these findings, and thus can provide a deeper understanding of the band structure at very extended shapes.Comment: 4 pages, 3 eps figures, final version accepted by Phys. Rev. C as a Rapid Communicatio
    corecore