1,520 research outputs found

    Global Distribution of Water Vapor and Cloud Cover--Sites for High Performance THz Applications

    Full text link
    Absorption of terahertz radiation by atmospheric water vapor is a serious impediment for radio astronomy and for long-distance communications. Transmission in the THz regime is dependent almost exclusively on atmospheric precipitable water vapor (PWV). Though much of the Earth has PWV that is too high for good transmission above 200 GHz, there are a number of dry sites with very low attenuation. We performed a global analysis of PWV with high-resolution measurements from the Moderate Resolution Imaging Spectrometer (MODIS) on two NASA Earth Observing System (EOS) satellites over the year of 2011. We determined PWV and cloud cover distributions and then developed a model to find transmission and atmospheric radiance as well as necessary integration times in the various windows. We produced global maps over the common THz windows for astronomical and satellite communications scenarios. Notably, we show that up through 1 THz, systems could be built in excellent sites of Chile, Greenland and the Tibetan Plateau, while Antarctic performance is good to 1.6 THz. For a ground-to-space communication link up through 847 GHz, we found several sites in the Continental United States where mean atmospheric attenuation is less than 40 dB; not an insurmountable challenge for a link.Comment: 15 pages, 23 figure

    Magnetic-Field-Induced Hybridization of Electron Subbands in a Coupled Double Quantum Well

    Full text link
    We employ a magnetocapacitance technique to study the spectrum of the soft two-subband (or double-layer) electron system in a parabolic quantum well with a narrow tunnel barrier in the centre. In this system unbalanced by gate depletion, at temperatures T\agt 30 mK we observe two sets of quantum oscillations: one originates from the upper electron subband in the closer-to-the-gate part of the well and the other indicates the existence of common gaps in the spectrum at integer fillings. For the lowest filling factors ν=1\nu=1 and ν=2\nu=2, both the common gap presence down to the point of one- to two-subband transition and their non-trivial magnetic field dependences point to magnetic-field-induced hybridization of electron subbands.Comment: Major changes, added one more figure, the latest version to be published in JETP Let

    Spontaneous Interlayer Charge Transfer near the Magnetic Quantum Limit

    Full text link
    Experiments reveal that a confined electron system with two equally-populated layers at zero magnetic field can spontaneously break this symmetry through an interlayer charge transfer near the magnetic quantum limit. New fractional quantum Hall states at unusual total filling factors such as \nu = 11/15 (= 1/3 + 2/5) stabilize as signatures that the system deforms itself, at substantial electrostatic energy cost, in order to gain crucial correlation energy by "locking in" separate incompressible liquid phases at unequal fillings in the two layers (e.g., layered 1/3 and 2/5 states in the case of \nu = 11/15).Comment: 4 pages, 4 figures (1 color) included in text. Related papers at http://www.ee.princeton.edu/~hari/papers.htm

    The thermal response of A pulsar glitch: The nonspherically symmetric case

    Get PDF
    We study the thermal evolution of a pulsar after a glitch in which the energy is released from a relatively compact region. A set of relativistic thermal transport and energy balance equations is used to study the thermal evolution, without making the assumption of spherical symmetry. We use an exact cooling model to solve this set of differential equations. Our results could differ significantly from those obtained under the assumption of spherical symmetry. Even for young pulsars with a hot core like the Vela pulsar, a detectable hot spot could be observed after a glitch if a large amount of energy is released in a small region close to the surface of the star. The results suggest that the intensity variation and the relative phases of hard X-ray emissions in different epochs may provide important information on the equation of state. © 1998. The American Astronomical Society. All rights reserved.published_or_final_versio

    Instrumentation of a high-sensitivity microwave vector detection system for low-temperature applications

    Full text link
    We present the design and the circuit details of a high-sensitivity microwave vector detection system, which is aiming for studying the low-dimensional electron system embedded in the slots of a coplanar waveguide at low temperatures. The coplanar waveguide sample is placed inside a phase-locked loop; the phase change of the sample may cause a corresponding change in the operation frequency, which can be measured precisely. We also employ a double-pulse modulation on the microwave signals, which comprises a fast pulse modulation for gated averaging and a slow pulse modulation for lock-in detection. In measurements on real samples at low temperatures, this system provides much better resolutions in both amplitude and phase than most of the conventional vector analyzers at power levels below -65 dBm.Comment: 7 pages, 11 figures, 1 table, lette

    Quantum Hall effect in single wide quantum wells

    Full text link
    We study the quantum Hall states in the lowest Landau level for a single wide quantum well. Due to a separation of charges to opposite sides of the well, a single wide well can be modelled as an effective two level system. We provide numerical evidence of the existence of a phase transition from an incompressible to a compressible state as the electron density is increased for specific well width. Our numerical results show a critical electron density which depends on well width, beyond which a transition incompressible double layer quantum Hall state to a mono-layer compressible state occurs. We also calculate the related phase boundary corresponding to destruction of the collective mode energy gap. We show that the effective tunneling term and the interlayer separation are both renormalised by the strong magnetic field. We also exploite the local density functional techniques in the presence of strong magnetic field at ν=1\nu=1 to calculate renormalized ΔSAS\Delta_{SAS}. The numerical results shows good agreement between many-body calculations and local density functional techniques in the presence of a strong magnetic field at ν=1\nu=1. we also discuss implications of this work on the ν=1/2\nu=1/2 incompressible state observed in SWQW.Comment: 30 pages, 7 figures (figures are not included
    • …
    corecore