24 research outputs found

    Virtual-pion and two-photon production in pp scattering

    Full text link
    Two-photon production in pp scattering is proposed as a means of studying virtual-pion emission. Such a process is complementary to real-pion emission in pp scattering. The virtual-pion signal is embedded in a background of double-photon bremsstrahlung. We have developed a model to describe this background process and show that in certain parts of phase space the virtual-pion signal gives significant contribution. In addition, through interference with the two-photon bremsstrahlung background, one can determine the relative phase of the virtual-pion process

    A Network Analysis of the Human T-Cell Activation Gene Network Identifies Jagged1 as a Therapeutic Target for Autoimmune Diseases

    Get PDF
    Understanding complex diseases will benefit the recognition of the properties of the gene networks that control biological functions. Here, we set out to model the gene network that controls T-cell activation in humans, which is critical for the development of autoimmune diseases such as Multiple Sclerosis (MS). The network was established on the basis of the quantitative expression from 104 individuals of 20 genes of the immune system, as well as on biological information from the Ingenuity database and Bayesian inference. Of the 31 links (gene interactions) identified in the network, 18 were identified in the Ingenuity database and 13 were new and we validated 7 of 8 interactions experimentally. In the MS patients network, we found an increase in the weight of gene interactions related to Th1 function and a decrease in those related to Treg and Th2 function. Indeed, we found that IFN-脽 therapy induces changes in gene interactions related to T cell proliferation and adhesion, although these gene interactions were not restored to levels similar to controls. Finally, we identify JAG1 as a new therapeutic target whose differential behaviour in the MS network was not modified by immunomodulatory therapy. In vitro treatment with a Jagged1 agonist peptide modulated the T-cell activation network in PBMCs from patients with MS. Moreover, treatment of mice with experimental autoimmune encephalomyelitis with the Jagged1 agonist ameliorated the disease course, and modulated Th2, Th1 and Treg function. This study illustrates how network analysis can predict therapeutic targets for immune intervention and identified the immunomodulatory properties of Jagged1 making it a new therapeutic target for MS and other autoimmune diseases

    Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies

    No full text
    Adenovirus is a widely used vector for cancer gene therapy because of its high infection efficiency and capacity for transgene expression in both dividing and nondividing cells. However, neutralisation of adenovirus by pre-existing antibodies can lead to inefficient delivery, and the wide tissue distribution of the coxsackie and adenovirus receptor (CAR, the primary receptor for adenovirus type 5) precludes target selectivity. These limitations have largely restricted therapeutic use of adenovirus to local or direct administration. A successful viral gene therapy vector would be protected from neutralising antibodies and exhibit a preferential tropism for target cells. We report here the development of a covalent coating and retargeting strategy using a multivalent hydrophilic polymer based on poly-[N-(2-hydroxypropyl)metha- crylamide] (pHPMA). Incorporation of targeting ligands such as basic fibroblast growth factor and vascular endothelial growth factor on to the polymer-coated virus produces ligand-mediated, CAR-independent binding and uptake into cells bearing appropriate receptors. Retargeted virus is resistant to antibody neutralisation and can infect receptor-positive target cells selectively in mixed culture, and also in xenografts in vivo. Multivalent polymeric modification of adenovirus is an effective way of changing its tropism and interaction with the immune system. As a non-genetic one-step process, the technology is simple, versatile and should yield vectors with an improved safety profile.</p

    MHC class II transactivator represses human IL-4 gene transcription by interruption of promoter binding with CBP/p300, STAT6 and NFAT1 via histone hypoacetylation

    No full text
    In addition to its property of enhancing major histocompatibility complex (MHC) class II expression, the class II transactivator (CIITA) was recently demonstrated to be involved in T helper type 1/type 2 (Th1/Th2) differentiation by regulating interleukin-4 (IL-4) gene transcription. There was however, controversy regarding whether CIITA promotes or suppresses IL-4 expression in the experiments with transgenic mice. To clarify the discrepancy by using simpler experimental systems, human Jurkat T cells that express IL-4 but not interferon-纬, even if stimulated with phorbol 12-myristate 13-acetate plus ionomycin, were used for CIITA transfection. Significant suppression of IL-4 gene expression was demonstrated. Simultaneously, histones H3 and H4 in the IL-4 promoter were hypoacetylated. The suppression could be totally reversed by the histone deacetylatase inhibitor trichostatin A. Furthermore, the IL-4 expression was determined in primarily established human Th1/Th2 cells to which CIITA small interference RNA (siRNA) had been introduced. A substantially increased level of IL-4 was recorded in the CIITA siRNA-transfected Th1 cells, which was in parallel with significantly enhanced acetylation in histone H3 of the IL-4 promoter. Chromatin immunoprecipitation analysis indicated that CIITA abrogated the binding of coactivator CBP/p300 and transcription factors STAT6/NFAT1 to IL-4 promoter in the CIITA-transfected cells. In conclusion, CIITA was active in the repression of transcription activation of human IL-4 gene in both the T-cell line and the primary human CD4 T cells by preventing transcription factors from binding to IL-4 promoter through histone hypoacetylation. Our data confirm a potential significant role of CIITA in controlling Th1/Th2 differentiation via modulation of IL-4 gene activation
    corecore