216 research outputs found

    An Electronic Mach-Zehnder Interferometer

    Full text link
    Double-slit electron interferometers, fabricated in high mobility two-dimensional electron gas (2DEG), proved to be very powerful tools in studying coherent wave-like phenomena in mesoscopic systems. However, they suffer from small fringe visibility due to the many channels in each slit and poor sensitivity to small currents due to their open geometry. Moreover, the interferometers do not function in a high magnetic field, namely, in the quantum Hall effect (QHE) regime, since it destroys the symmetry between left and right slits. Here, we report on the fabrication and operation of a novel, single channel, two-path electron interferometer that functions in a high magnetic field. It is the first electronic analog of the well-known optical Mach-Zehnder (MZ) interferometer. Based on single edge state and closed geometry transport in the QHE regime the interferometer is highly sensitive and exhibits very high visibility (62%). However, the interference pattern decays precipitously with increasing electron temperature or energy. While we do not understand the reason for the dephasing we show, via shot noise measurement, that it is not a decoherence process that results from inelastic scattering events.Comment: to appear in Natur

    Quantum-Limited Measurement and Information in Mesoscopic Detectors

    Full text link
    We formulate general conditions necessary for a linear-response detector to reach the quantum limit of measurement efficiency, where the measurement-induced dephasing rate takes on its minimum possible value. These conditions are applicable to both non-interacting and interacting systems. We assess the status of these requirements in an arbitrary non-interacting scattering based detector, identifying the symmetries of the scattering matrix needed to reach the quantum limit. We show that these conditions are necessary to prevent the existence of information in the detector which is not extracted in the measurement process.Comment: 13 pages, 1 figur

    Controlled Dephasing of Electrons by Non-Gaussian Shot Noise

    Full text link
    In a 'controlled dephasing' experiment [1-3], an interferometer loses its coherence due to entanglement with a controlled quantum system ('which path' detector). In experiments that were conducted thus far in mesoscopic systems only partial dephasing was achieved. This was due to weak interactions between many detector electrons and the interfering electron, resulting in a Gaussian phase randomizing process [4-10]. Here, we report the opposite extreme: a complete destruction of the interference via strong phase randomization only by a few electrons in the detector. The realization was based on interfering edge channels (in the integer quantum Hall effect regime, filling factor 2) in a Mach-Zehnder electronic interferometer, with an inner edge channel serving as a detector. Unexpectedly, the visibility quenched in a periodic lobe-type form as the detector current increased; namely, it periodically decreased as the detector current, and thus the detector's efficiency, increased. Moreover, the visibility had a V-shape dependence on the partitioning of the detector current, and not the expected dependence on the second moment of the shot noise, T(1-T), with T the partitioning. We ascribe these unexpected features to the strong detector-interferometer coupling, allowing only 1-3 electrons in the detector to fully dephase the interfering electron. Consequently, in this work we explored the non-Gaussian nature of noise [11], namely, the direct effect of the shot noise full counting statistics [12-15].Comment: 14 pages, 4 figure

    Continuous weak measurement of quantum coherent oscillations

    Full text link
    We consider the problem of continuous quantum measurement of coherent oscillations between two quantum states of an individual two-state system. It is shown that the interplay between the information acquisition and the backaction dephasing of the oscillations by the detector imposes a fundamental limit, equal to 4, on the signal-to-noise ratio of the measurement. The limit is universal, e.g., independent of the coupling strength between the detector and system, and results from the tendency of quantum measurement to localize the system in one of the measured eigenstates

    Effect of quantum entanglement on Aharonov-Bohm oscillations, spin-polarized transport and current magnification effect

    Get PDF
    We present a simple model of transmission across a metallic mesoscopic ring. In one of its arm an electron interacts with a single magnetic impurity via an exchange coupling. We show that entanglement between electron and spin impurity states leads to reduction of Aharonov-Bohm oscillations in the transmission coefficient. The spin-conductance is asymmetric in the flux reversal as opposed to the two probe electrical conductance which is symmetric. In the same model in contradiction to the naive expectation of a current magnification effect, we observe enhancement as well as the suppression of this effect depending on the system parameters. The limitations of this model to the general notion of dephasing or decoherence in quantum systems are pointed out.Comment: Talk presented at the International Discussion Meeting on Mesoscopic and Disordered systems, December, 2000, at IISc Bangalore 17 pages, 8figure

    Crossover from mesoscopic to universal phase for electron transmission in quantum dots

    Full text link
    Measuring phase in coherent electron systems (mesoscopic systems) provides ample information not easily revealed by conductance measurements. Phase measurements in relatively large quantum dots (QDs) recently demonstrated a universal like phase evolution independent of dot size, shape, and occupancy. Explicitly, in Coulomb blockaded QDs the transmission phase increased monotonically by pi throughout each conductance peak, thereafter, in the conductance valleys the phase returned sharply to its base value. Expected mesoscopic features in the phase, related to spin degeneracy or to exchange effects, were never observed. Presently, there is no satisfactory full explanation for the observed phase universality. Unfortunately, the phase in a few-electron QDs, where it can be better understood was never measured. Here we report on such measurements on a small QD that occupy only 1-20 electrons. Such dot was embedded in one arm of a two path electron interferometer, with an electron counter near the dot. Unlike the repetitive behavior found in larger dots we found now mesoscopic features for dot occupation of less than some 10 electrons. An unexpected feature in this regime is a clear observation of the occupation of two different orbital states by the first two electrons - contrary to the recent publications. As the occupation increased the phase evolved and turned universal like for some 14 electrons and higher. The present measurements allowed us to determine level occupancy and parity. More importantly, they suggest that QDs go through a phase transition, from mesoscopic to universal like behavior, as the occupancy increases. These measurements help in singling out potential few theoretical models among the many proposed.Comment: 12 pages, 6 figure

    Noise and Measurement Efficiency of a Partially Coherent Mesoscopic Detector

    Full text link
    We study the noise properties and efficiency of a mesoscopic resonant-level conductor which is used as a quantum detector, in the regime where transport through the level is only partially phase coherent. We contrast models in which detector incoherence arises from escape to a voltage probe, versus those in which it arises from a random time-dependent potential. Particular attention is paid to the back-action charge noise of the system. While the average detector current is similar in all models, we find that its noise properties and measurement efficiency are sensitive both to the degree of coherence and to the nature of the dephasing source. Detector incoherence prevents quantum limited detection, except in the non-generic case where the source of dephasing is not associated with extra unobserved information. This latter case can be realized in a version of the voltage probe model.Comment: 15 pages, 5 figures; revised dicussion of voltage probe model

    Storage Qubits and Their Potential Implementation Through a Semiconductor Double Quantum Dot

    Get PDF
    In the context of a semiconductor based implementation of a quantum computer the idea of a quantum storage bit is presented and a possible implementation using a double quantum dot structure is considered. A measurement scheme using a stimulated Raman adiabatic passage is discussed.Comment: Revised version accepted for publication in Phys.Rev. B. 19 pages, 4 eps figure

    Dephasing and Measurement Efficiency via a Quantum Dot Detector

    Full text link
    We study charge detection and controlled dephasing of a mesoscopic system via a quantum dot detector (QDD), where the mesoscopic system and the QDD are capacitively coupled. The QDD is considered to have coherent resonant tunnelling via a single level. It is found that the dephasing rate is proportional to the square of the conductance of the QDD for the Breit-Wigner model, showing that the dephasing is completely different from the shot noise of the detector. The measurement rate, on the other hand, shows a dip near the resonance. Our findings are peculiar especially for a symmetric detector in the following aspect: The dephasing rate is maximum at resonance of the QDD where the detector conductance is insensitive to the charge state of the mesoscopic system. As a result, the efficiency of the detector shows a dip and vanishes at resonance, in contrast to the single-channel symmetric non-resonant detector that has always a maximum efficiency. We find that this difference originates from a very general property of the scattering matrix: The abrupt phase change exists in the scattering amplitudes in the presence of the symmetry, which is insensitive to the detector current but {\em stores} the information of the quantum state of the mesoscopic system.Comment: 7 pages, 3 figure

    Spectrum of qubit oscillations from Bloch equations

    Full text link
    We have developed a formalism suitable for calculation of the output spectrum of a detector continuously measuring quantum coherent oscillations in a solid-state qubit, starting from microscopic Bloch equations. The results coincide with that obtained using Bayesian and master equation approaches. The previous results are generalized to the cases of arbitrary detector response and finite detector temperature.Comment: 8 page
    • …
    corecore