12 research outputs found

    Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection.

    No full text
    Mycobacterium tuberculosis is recognized by multiple pattern recognition receptors involved in innate immune defense, but their direct role in tuberculosis pathogenesis remains unknown. Beyond TLRs, scavenger receptors (SRs) and C-type lectins may play a crucial role in the sensing and signaling of pathogen motifs, as well as contribute to M. tuberculosis immune evasion. In this study, we addressed the relative role and potential redundancy of these receptors in the host response and resistance to M. tuberculosis infection using mice deficient for representative SR, C-type lectin receptor, or seven transmembrane receptor families. We show that a single deficiency in the class A SR, macrophage receptor with collagenous structure, CD36, mannose receptor, specific ICAM-3 grabbing nonintegrin-related, or F4/80 did not impair the host resistance to acute or chronic M. tuberculosis infection in terms of survival, control of bacterial clearance, lung inflammation, granuloma formation, and cytokine and chemokine expression. Double deficiency for the SRs class A SR types I and II plus CD36 or for the C-type lectins mannose receptor plus specific ICAM-3 grabbing nonintegrin-related had a limited effect on macrophage uptake of mycobacteria and TNF response and on the long-term control of M. tuberculosis infection. By contrast, mice deficient in the TNF, IL-1, or IFN-gamma pathway were unable to control acute M. tuberculosis infection. In conclusion, we document a functional redundancy in the pattern recognition receptors, which might cooperate in a coordinated response to sustain the full immune control of M. tuberculosis infection, in sharp contrast with the nonredundant, essential role of the TNF, IL-1, or IFN-gamma pathway for host resistance to M. tuberculosis

    Surprisingly long survival of premature conclusions about naked mole-rat biology

    Get PDF
    Naked mole-rats express many unusual traits for such a small rodent. Their morphology, social behaviour, physiology, and ageing have been well studied over the past half-century. Many early findings and speculations about this subterranean species persist in the literature, although some have been repeatedly questioned or refuted. While the popularity of this species as a natural-history curiosity, and oversimplified story-telling in science journalism, might have fuelled the perpetuation of such misconceptions, an accurate understanding of their biology is especially important for this new biomedical model organism. We review 28 of these persistent myths about naked mole-rat sensory abilities, ecophysiology, social behaviour, development and ageing, and where possible we explain how these misunderstandings came about

    Human tankyrases are aberrantly expressed in colon tumors and contain multiple epitopes that induce humoral and cellular immune responses in cancer patients

    Full text link
    PURPOSE: Tankyrases 1 and 2 are telomere-associated poly(ADP-ribose) polymerases (PARP) that can positively regulate telomere elongation and interact with multiple cellular proteins. Recent reports implicated tankyrases as tumor antigens and potential targets of anticancer treatment. We examined expression of tankyrases in colon tumors and immune response to these enzymes in patients with different types of cancer. METHODS: mRNA and protein expression was evaluated by quantitative real-time RT-PCR and Western blotting, respectively. Humoral immune response to recombinant tankyrases was investigated by modified enzyme-linked immunoassays. Cellular immune response was analysed by ELISPOT and (51)Cr release assays. RESULTS: We found that both mRNA and protein levels of tankyrase 2 (TNKL) are upregulated in colon tumors. In contrast, protein level of tankyrase 1 (TNKS) is downregulated, while mRNA level shows variable changes. More than a quarter of colon cancer patients develop humoral immune response to at least one of the two tankyrases. In this study we mapped common and unique B-cell epitopes located in different domains of the two proteins. Additionally, we present evidence for T-cell responses both to epitopes that are unique for TNKL and to those shared between TNKL and TNKS. CONCLUSION: Our study favors a biomarker usage of antibody response to tankyrases. Spontaneous CD8(+) T-cell responses to these enzymes are rare and further investigation is needed to evaluate tankyrases as potential targets for cancer immunotherapy
    corecore