10 research outputs found

    Metabolomic Analysis of Liver Tissue from the VX2 Rabbit Model of Secondary Liver Tumors

    Get PDF
    Purpose. The incidence of liver neoplasms is rising in USA. The purpose of this study was to determine metabolic profiles of liver tissue during early cancer development. Methods. We used the rabbitVX2 model of liver tumors (LT) and a control group consisting of sham animals implanted with Gelfoam into their livers (LG). After two weeks from implantation, liver tissue from lobes with and without tumor was obtained from experimental animals (LT+/LT−) as well as liver tissue from controls (LG+/LG−). Peaks obtained by Gas Chromatography-Mass Spectrometry were subjected to identification. 56 metabolites were identified and their profiles compared between groups using principal component analysis (PCA) and a mixed-effect two-way ANOVA model. Results. Animals recovered from surgery uneventfully. Analyses identified a metabolite profile that significantly differs in experimental conditions after controlling the False Discovery Rate (FDR). 16 metabolites concentrations differed significantly when comparing samples from (LT+/LT−) to samples from (LG+/LG−) livers. A significant difference was also shown in 20 metabolites when comparing samples from (LT+) liver lobes to samples from (LT−) liver lobes. Conclusion. Normal liver tissue harboring malignancy had a distinct metabolic signature. The role of metabolic profiles on liver biopsies for the detection of early liver cancer remains to be determined

    Metabolomic Analysis of Liver Tissue from the VX2 Rabbit Model of Secondary Liver Tumors

    Get PDF
    Purpose. The incidence of liver neoplasms is rising in USA. The purpose of this study was to determine metabolic profiles of liver tissue during early cancer development. Methods. We used the rabbit VX2 model of liver tumors (LT) and a control group consisting of sham animals implanted with Gelfoam into their livers (LG). After two weeks from implantation, liver tissue from lobes with and without tumor was obtained from experimental animals (LT+/LT−) as well as liver tissue from controls (LG+/LG−). Peaks obtained by Gas Chromatography-Mass Spectrometry were subjected to identification. 56 metabolites were identified and their profiles compared between groups using principal component analysis (PCA) and a mixed-effect two-way ANOVA model. Results. Animals recovered from surgery uneventfully. Analyses identified a metabolite profile that significantly differs in experimental conditions after controlling the False Discovery Rate (FDR). 16 metabolites concentrations differed significantly when comparing samples from (LT+/LT−) to samples from (LG+/LG−) livers. A significant difference was also shown in 20 metabolites when comparing samples from (LT+) liver lobes to samples from (LT−) liver lobes. Conclusion. Normal liver tissue harboring malignancy had a distinct metabolic signature. The role of metabolic profiles on liver biopsies for the detection of early liver cancer remains to be determined

    Fatty Acid Oxidation in Peroxisomes: Enzymology, Metabolic Crosstalk with Other Organelles and Peroxisomal Disorders

    No full text
    Peroxisomes play a central role in metabolism as exemplified by the fact that many genetic disorders in humans have been identified through the years in which there is an impairment in one or more of these peroxisomal functions, in most cases associated with severe clinical signs and symptoms. One of the key functions of peroxisomes is the β-oxidation of fatty acids which differs from the oxidation of fatty acids in mitochondria in many respects which includes the different substrate specificities of the two organelles. Whereas mitochondria are the main site of oxidation of medium-and long-chain fatty acids, peroxisomes catalyse the β-oxidation of a distinct set of fatty acids, including very-long-chain fatty acids, pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid. Peroxisomes require the functional alliance with multiple subcellular organelles to fulfil their role in metabolism. Indeed, peroxisomes require the functional interaction with lysosomes, lipid droplets and the endoplasmic reticulum, since these organelles provide the substrates oxidized in peroxisomes. On the other hand, since peroxisomes lack a citric acid cycle as well as respiratory chain, oxidation of the end-products of peroxisomal fatty acid oxidation notably acetyl-CoA, and different medium-chain acyl-CoAs, to CO2 and H2O can only occur in mitochondria. The same is true for the reoxidation of NADH back to NAD+. There is increasing evidence that these interactions between organelles are mediated by tethering proteins which bring organelles together in order to allow effective exchange of metabolites. It is the purpose of this review to describe the current state of knowledge about the role of peroxisomes in fatty acid oxidation, the transport of metabolites across the peroxisomal membrane, its functional interaction with other subcellular organelles and the disorders of peroxisomal fatty acid β-oxidation identified so far in humans
    corecore