277 research outputs found

    Classification of the line-soliton solutions of KPII

    Full text link
    In the previous papers (notably, Y. Kodama, J. Phys. A 37, 11169-11190 (2004), and G. Biondini and S. Chakravarty, J. Math. Phys. 47 033514 (2006)), we found a large variety of line-soliton solutions of the Kadomtsev-Petviashvili II (KPII) equation. The line-soliton solutions are solitary waves which decay exponentially in (x,y)(x,y)-plane except along certain rays. In this paper, we show that those solutions are classified by asymptotic information of the solution as ∣y∣→∞|y| \to \infty. Our study then unravels some interesting relations between the line-soliton classification scheme and classical results in the theory of permutations.Comment: 30 page

    Semiempirical Hartree-Fock calculations for KNbO3

    Full text link
    In applying the semiempirical intermediate neglect of differential overlap (INDO) method based on the Hartree-Fock formalism to a cubic perovskite-based ferroelectric material KNbO3, it was demonstrated that the accuracy of the method is sufficient for adequately describing the small energy differences related to the ferroelectric instability. The choice of INDO parameters has been done for a system containing Nb. Based on the parametrization proposed, the electronic structure, equilibrium ground state structure of the orthorhombic and rhombohedral phases, and Gamma-TO phonon frequencies in cubic and rhombohedral phases of KNbO3 were calculated and found to be in good agreement with the experimental data and with the first-principles calculations available.Comment: 7 pages, 2 Postscript figures, uses psfig.tex. To be published in Phys.Rev.B 54, No.4 (1996

    Congestion management with aggregated delivery of flexibility using distributed energy resources

    Get PDF
    Increasing penetrations of small scale electricity generation and storage technologies are making an important contribution to the decentralisation and decarbonisation of power system control and operation. Although not currently realised, coordination of local distributed energy resources (DERs) and a greater degree of demand flexibility through digital aggregation, offer the potential to lower the cost of energy at source and to enable remuneration for consumer participation, addressing the rising costs of energy supply, which impacts strongly on all consumers. Methods are required to manage potential distribution network constraints caused by flexible DERs, as well as for determining the risk to delivery of flexibility from these DERs for aggregators. A heuristic network flexibility dispatch methodology is proposed, which can be used to calculate the probability of constraints, and any required adjustments of flexible agent positions to resolve them, at half hourly resolution. The aggregator can use this methodology to manage their portfolio risk, while a distribution system operator can estimate required flexibility to manage constraints down to low voltage level

    KP solitons in shallow water

    Full text link
    The main purpose of the paper is to provide a survey of our recent studies on soliton solutions of the Kadomtsev-Petviashvili (KP) equation. The classification is based on the far-field patterns of the solutions which consist of a finite number of line-solitons. Each soliton solution is then defined by a point of the totally non-negative Grassmann variety which can be parametrized by a unique derangement of the symmetric group of permutations. Our study also includes certain numerical stability problems of those soliton solutions. Numerical simulations of the initial value problems indicate that certain class of initial waves asymptotically approach to these exact solutions of the KP equation. We then discuss an application of our theory to the Mach reflection problem in shallow water. This problem describes the resonant interaction of solitary waves appearing in the reflection of an obliquely incident wave onto a vertical wall, and it predicts an extra-ordinary four-fold amplification of the wave at the wall. There are several numerical studies confirming the prediction, but all indicate disagreements with the KP theory. Contrary to those previous numerical studies, we find that the KP theory actually provides an excellent model to describe the Mach reflection phenomena when the higher order corrections are included to the quasi-two dimensional approximation. We also present laboratory experiments of the Mach reflection recently carried out by Yeh and his colleagues, and show how precisely the KP theory predicts this wave behavior.Comment: 50 pages, 25 figure

    Electronic structure of Co_xTiSe_2 and Cr_xTiSe_2

    Full text link
    The results of investigations of intercalated compounds Cr_xTiSe_2 and Co_xTiSe_2 by X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES) are presented. The data obtained are compared with theoretical results of spin-polarized band structure calculations. A good agreement between theoretical and experimental data for the electronic structure of the investigated materials has been observed. The interplay between the M3d--Ti3d hybridization (M=Cr, Co) and the magnetic moment at the M site is discussed. A 0.9 eV large splitting of the core Cr2p{3/2} level was observed, which reveals a strong exchange magnetic interaction of 3d-2p electrons of Cr. In the case of a strong localization of the Cr3d electrons (for x<0.25), the broadening of the CrL spectra into the region of the states above the nominal Fermi level was observed and attributed to X-ray re-emission. The measured kinetic properties are in good accordance with spectral investigations and band calculation results.Comment: 14 pages, 11 figures, submitted to Phys.Rev.

    Applications of the generalized gradient approximation to ferroelectric perovskites

    Full text link
    The Perdew-Burke-Ernzerhof generalized gradient approximation to the density functional theory is tested with respect to sensitivity to the choice of the value of the parameter κ\kappa, which is associated to the degree of localization of the exchange-correlation hole. A study of structural and dynamical properties of four selected ferroelectric perovskites is presented. The originally proposed value of κ\kappa=0.804 %(best suited for atoms and molecules) works well for some solids, whereas for the ABO3_3 perovskites it must be decreased in order to predict equilibrium lattice parameters in good agreement with experiments. The effects on the structural instabilities and zone center phonon modes are examined. The need of varying κ\kappa from one system to another reflects the fact that the localization of the exchange-correlation hole is system dependent, and the sensitivity of the structural properties to its actual value illustrates the necessity of finding a universal function for κ\kappa.Comment: 15 pages, 2 figures, PRB in pres

    Shear Viscosity of the outer crust of Neutron stars: Ion Contribution

    Full text link
    The shear viscosity of the crust might have a damping effect on the amplitude of r-modes of rotating neutron stars. This damping has implications for the emission of gravitational waves. We calculate the contribution to the shear viscosity coming from the ions using both semi-analytical methods, that consider binary collisions, and Molecular Dynamics simulations. We compare these results with the contribution coming from electrons. We study how the shear viscosity depends on density for conditions of interest in neutron star envelopes and outer crusts. In the low density limit, we find good agreement between results of our molecular dynamics simulations and classical semi-analytic calculations.Comment: 13 pages, 14 figures, Subsection adde

    Application of a 2D Molybdenum Telluride in SERS Detection of Biorelevant Molecules

    Get PDF
    Two-dimensional (2D) transition-metal dichalcogenides have become promising candidates for surface-enhanced Raman spectroscopy (SERS), but currently very few examples of detection of relevant molecules are available. Herein, we show the detection of the lipophilic disease marker beta-sitosterol on few-layered MoTe2 films. The chemical vapor deposition (CVD)-grown films are capable of nanomolar detection, exceeding the performance of alternative noble-metal surfaces. We confirm that the enhancement occurs through the chemical enhancement (CE) mechanism via formation of a surface-analyte complex, which leads to an enhancement factor of approximate to 10(4), as confirmed by Fourier transform infrared (FTIR), UV-vis, and cyclic voltammetry (CV) analyses and density functional theory (DFT) calculations. Low values of signal deviation over a seven-layered MoTe2 film confirms the homogeneity and reproducibility of the results in comparison to noble-metal substrate analogues. Furthermore, beta-sitosterol detection within cell culture media, a minimal loss of signal over 50 days, and the opportunity for sensor regeneration suggest that MoTe2 can become a promising new SERS platform for biosensing.Peer reviewe

    Preparation and X-ray structure of 2-iodoxybenzenesulfonic acid (IBS) - a powerful hypervalent iodine(V) oxidant

    Get PDF
    The selective preparation of 2-iodoxybenzenesulfonic acid (IBS, as potassium or sodium salts) by oxidation of sodium 2-iodobenzenesulfonate with Oxone or sodium periodate in water is reported. The single crystal X-ray diffraction analysis reveals a complex polymeric structure consisting of three units of IBS as potassium salt and one unit of 2-iodoxybenzenesulfonic acid linked together by relatively strong I=O···I intermolecular interactions. Furthermore, a new method for the preparation of the reduced form of IBS, 2-iodosylbenzenesulfonic acid, by using periodic acid as an oxidant, has been developed. It has been demonstrated that the oxidation of free 2-iodobenzenesulfonic acid under acidic conditions affords an iodine(III) heterocycle (2-iodosylbenzenesulfonic acid), while the oxidation of sodium 2-iodobenzenesulfonate in neutral aqueous solution gives the iodine(V) products
    • …
    corecore