2,692 research outputs found
Alien Registration- Pappas, Chrysula Y. (Portland, Cumberland County)
https://digitalmaine.com/alien_docs/31355/thumbnail.jp
Alien Registration- Pappas, Chrysula Y. (Portland, Cumberland County)
https://digitalmaine.com/alien_docs/31355/thumbnail.jp
Quantitation of buried contamination by use of solvents
Experiments directed at determining the potential of reclaimed silicone polymers for reuse are described
Quantitation of buried contamination by use of solvents
Spore recovery form cured silicone potting compounds using amine solvents to degrade the cured polymers was investigated. A complete list of solvents and a description of the effect of each on two different silicone polymers is provided
Quantum Sensor Miniaturization
The classical bound on image resolution defined by the Rayleigh limit can be
beaten by exploiting the properties of quantum mechanical entanglement. If
entangled photons are used as signal states, the best possible resolution is
instead given by the Heisenberg limit, an improvement proportional to the
number of entangled photons in the signal. In this paper we present a novel
application of entanglement by showing that the resolution obtained by an
imaging system utilizing separable photons can be achieved by an imaging system
making use of entangled photons, but with the advantage of a smaller aperture,
thus resulting in a smaller and lighter system. This can be especially valuable
in satellite imaging where weight and size play a vital role.Comment: 3 pages, 1 figure. Accepted for publication in Photonics Technology
Letter
Emission of Massive Scalar Fields by a Higher-Dimensional Rotating Black-Hole
We perform a comprehensive study of the emission of massive scalar fields by
a higher-dimensional, simply rotating black hole both in the bulk and on the
brane. We derive approximate, analytic results as well as exact numerical ones
for the absorption probability, and demonstrate that the two sets agree very
well in the low and intermediate-energy regime for scalar fields with mass
m_\Phi < 1 TeV in the bulk and m_\Phi < 0.5 TeV on the brane. The numerical
values of the absorption probability are then used to derive the Hawking
radiation power emission spectra in terms of the number of extra dimensions,
angular-momentum of the black hole and mass of the emitted field. We compute
the total emissivities in the bulk and on the brane, and demonstrate that,
although the brane channel remains the dominant one, the bulk-over-brane energy
ratio is considerably increased (up to 33%) when the mass of the emitted field
is taken into account.Comment: 28 pages, 18 figure
Extended skyrmion lattice scattering and long-time memory in the chiral magnet FeCoSi
Small angle neutron scattering measurements on a bulk single crystal of the
doped chiral magnet FeCoSi with =0.3 reveal a pronounced effect
of the magnetic history and cooling rates on the magnetic phase diagram. The
extracted phase diagrams are qualitatively different for zero and field cooling
and reveal a metastable skyrmion lattice phase outside the A-phase for the
latter case. These thermodynamically metastable skyrmion lattice correlations
coexist with the conical phase and can be enhanced by increasing the cooling
rate. They appear in a wide region of the phase diagram at temperatures below
the -phase but also at fields considerably smaller or higher than the fields
required to stabilize the A-phase
Minimizing the Age of Information in Wireless Networks with Stochastic Arrivals
We consider a wireless network with a base station serving multiple traffic
streams to different destinations. Packets from each stream arrive to the base
station according to a stochastic process and are enqueued in a separate (per
stream) queue. The queueing discipline controls which packet within each queue
is available for transmission. The base station decides, at every time t, which
stream to serve to the corresponding destination. The goal of scheduling
decisions is to keep the information at the destinations fresh. Information
freshness is captured by the Age of Information (AoI) metric.
In this paper, we derive a lower bound on the AoI performance achievable by
any given network operating under any queueing discipline. Then, we consider
three common queueing disciplines and develop both an Optimal Stationary
Randomized policy and a Max-Weight policy under each discipline. Our approach
allows us to evaluate the combined impact of the stochastic arrivals, queueing
discipline and scheduling policy on AoI. We evaluate the AoI performance both
analytically and using simulations. Numerical results show that the performance
of the Max-Weight policy is close to the analytical lower bound
Universality of the helimagnetic transition in cubic chiral magnets: Small angle neutron scattering and neutron spin echo spectroscopy studies of FeCoSi
We present a comprehensive Small Angle Neutron Scattering (SANS) and Neutron
Spin Echo Spectroscopy (NSE) study of the structural and dynamical aspects of
the helimagnetic transition in FeCoSi with = 0.30. In contrast
to the sharp transition observed in the archetype chiral magnet MnSi, the
transition in FeCoSi is gradual and long-range helimagnetic
ordering coexists with short-range correlations over a wide temperature range.
The dynamics are more complex than in MnSi and involve long relaxation times
with a stretched exponential relaxation which persists even under magnetic
field. These results in conjunction with an analysis of the hierarchy of the
relevant length scales show that the helimagnetic transition in
FeCoSi differs substantially from the transition in MnSi and
question the validity of a universal approach to the helimagnetic transition in
chiral magnets
Recommended from our members
Ageing carers and intellectual disability: a systematic scoping review of literature
- …