80 research outputs found

    Superconductor-insulator quantum phase transition in a single Josephson junction

    Full text link
    The superconductor-to-insulator quantum phase transition in resistively shunted Josephson junctions is investigated by means of path-integral Monte Carlo simulations. This numerical technique allows us to directly access the (previously unexplored) regime of the Josephson-to-charging energy ratios E_J/E_C of order one. Our results unambiguously support an earlier theoretical conjecture, based on renormalization-group calculations, that at T -> 0 the dissipative phase transition occurs at a universal value of the shunt resistance R_S = h/4e^2 for all values E_J/E_C. On the other hand, finite-temperature effects are shown to turn this phase transition into a crossover, which position depends significantly on E_J/E_C, as well as on the dissipation strength and on temperature. The latter effect needs to be taken into account in order to reconcile earlier theoretical predictions with recent experimental results.Comment: 7 pages, 6 figure

    Local dissipation effects in two-dimensional quantum Josephson junction arrays with magnetic field

    Full text link
    We study the quantum phase transitions in two-dimensional arrays of Josephson-couples junctions with short range Josephson couplings (given by the Josephson energy) and the charging energy. We map the problem onto the solvable quantum generalization of the spherical model that improves over the mean-field theory method. The arrays are placed on the top of a two-dimensional electron gas separated by an insulator. We include effects of the local dissipation in the presence of an external magnetic flux f in square lattice for several rational fluxes f=0,1/2,1/3,1/4 and 1/6. We also have examined the T=0 superconducting-insulator phase boundary as function of a dissipation alpha for two different geometry of the lattice: square and triangular. We have found critical value of the dissipation parameter independent on geometry of the lattice and presence magnetic field.Comment: accepted to PR

    Fluctuating Filaments I: Statistical Mechanics of Helices

    Full text link
    We examine the effects of thermal fluctuations on thin elastic filaments with non-circular cross-section and arbitrary spontaneous curvature and torsion. Analytical expressions for orientational correlation functions and for the persistence length of helices are derived, and it is found that this length varies non-monotonically with the strength of thermal fluctuations. In the weak fluctuation regime, the local helical structure is preserved and the statistical properties are dominated by long wavelength bending and torsion modes. As the amplitude of fluctuations is increased, the helix ``melts'' and all memory of intrinsic helical structure is lost. Spontaneous twist of the cross--section leads to resonant dependence of the persistence length on the twist rate.Comment: 5 figure

    Conformations of Randomly Linked Polymers

    Full text link
    We consider polymers in which M randomly selected pairs of monomers are restricted to be in contact. Analytical arguments and numerical simulations show that an ideal (Gaussian) chain of N monomers remains expanded as long as M<<N; its mean squared end to end distance growing as r^2 ~ M/N. A possible collapse transition (to a region of order unity) is related to percolation in a one dimensional model with long--ranged connections. A directed version of the model is also solved exactly. Based on these results, we conjecture that the typical size of a self-avoiding polymer is reduced by the links to R > (N/M)^(nu). The number of links needed to collapse a polymer in three dimensions thus scales as N^(phi), with (phi) > 0.43.Comment: 6 pages, 3 Postscript figures, LaTe

    Surface Scaling Analysis of a Frustrated Spring-network Model for Surfactant-templated Hydrogels

    Full text link
    We propose and study a simplified model for the surface and bulk structures of crosslinked polymer gels, into which voids are introduced through templating by surfactant micelles. Such systems were recently studied by Atomic Force Microscopy [M. Chakrapani et al., e-print cond-mat/0112255]. The gel is represented by a frustrated, triangular network of nodes connected by springs of random equilibrium lengths. The nodes represent crosslinkers, and the springs correspond to polymer chains. The boundaries are fixed at the bottom, free at the top, and periodic in the lateral direction. Voids are introduced by deleting a proportion of the nodes and their associated springs. The model is numerically relaxed to a representative local energy minimum, resulting in an inhomogeneous, ``clumpy'' bulk structure. The free top surface is defined at evenly spaced points in the lateral (x) direction by the height of the topmost spring, measured from the bottom layer, h(x). Its scaling properties are studied by calculating the root-mean-square surface width and the generalized increment correlation functions C_q(x)= . The surface is found to have a nontrivial scaling behavior on small length scales, with a crossover to scale-independent behavior on large scales. As the vacancy concentration approaches the site-percolation limit, both the crossover length and the saturation value of the surface width diverge in a manner that appears to be proportional to the bulk connectivity length. This suggests that a percolation transition in the bulk also drives a similar divergence observed in surfactant templated polyacrylamide gels at high surfactant concentrations.Comment: 17 pages RevTex4, 10 imbedded eps figures. Expanded discussion of multi-affinit

    Thermal Fluctuations of Elastic Filaments with Spontaneous Curvature and Torsion

    Full text link
    We study the effects of thermal flucutations on thin elastic filaments with spontaneous curvature and torsion. We derive analytical expressions for the orientational correlation functions and for the persistence length of helices, and find that this length varies non-monotonically with the strength of thermal fluctuations. In the weak fluctuation regime, the persistence length of a spontaneously twisted helix has three resonance peaks as a function of the twist rate. In the limit of strong fluctuations, all memory of the helical shape is lost.Comment: 1 figur

    Self- generated disorder and structural glass formation in homopolymer globules

    Full text link
    We have investigated the interrelation between the spin glasses and the structural glasses. Spin glasses in this case are random magnets without reflection symmetry (e.g. pp - spin interaction spin glasses and Potts glasses) which contain quenched disorder, whereas the structural glasses are here exemplified by the homopolymeric globule, which can be viewed as a liquid of connected molecules on nano scales. It is argued that the homopolymeric globule problem can be mapped onto a disorder field theoretical model whose effective Hamiltonian resembles the corresponding one for the spin glass model. In this sense the disorder in the globule is self - generated (in contrast to spin glasses) and can be related with competitive interactions (virial coefficients of different signs) and the chain connectivity. The work is aimed at giving a quantitative description of this analogy. We have investigated the phase diagram of the homopolymeric globule where the transition line from the liquid to glassy globule is treated in terms of the replica symmetry breaking paradigm. The configurational entropy temperature dependence is also discussed.Comment: 22 pages, 4 figures, submitted to Phys. Rev.

    Electron transport through interacting quantum dots

    Full text link
    We present a detailed theoretical investigation of the effect of Coulomb interactions on electron transport through quantum dots and double barrier structures connected to a voltage source via an arbitrary linear impedance. Combining real time path integral techniques with the scattering matrix approach we derive the effective action and evaluate the current-voltage characteristics of quantum dots at sufficiently large conductances. Our analysis reveals a reach variety of different regimes which we specify in details for the case of chaotic quantum dots. At sufficiently low energies the interaction correction to the current depends logarithmically on temperature and voltage. We identify two different logarithmic regimes with the crossover between them occurring at energies of order of the inverse dwell time of electrons in the dot. We also analyze the frequency-dependent shot noise in chaotic quantum dots and elucidate its direct relation to interaction effects in mesoscopic electron transport.Comment: 21 pages, 4 figures. References added, discussion slightly extende

    Localization and Capacitance Fluctuations in Disordered Au Nano-junctions

    Full text link
    Nano-junctions, containing atomic-scale gold contacts between strongly disordered leads, exhibit different transport properties at room temperature and at low temperature. At room temperature, the nano-junctions exhibit conductance quantization effects. At low temperatures, the contacts exhibit Coulomb-Blockade. We show that the differences between the room-temperature and low temperature properties arise from the localization of electronic states in the leads. The charging energy and capacitance of the nano-junctions exhibit strong fluctuations with applied magnetic field at low temperature, as predicted theoretically.Comment: 20 pages 8 figure
    • …
    corecore