268 research outputs found

    A quasi-linear algorithm to compute the tree of shapes of n-D images

    Get PDF
    International audienceTo compute the morphological self-dual representation of images, namely the tree of shapes, the state-of-the-art algorithms do not have a satisfactory time complexity. Furthermore the proposed algorithms are only effective for 2D images and they are far from being simple to implement. That is really penalizing since a self-dual representation of images is a structure that gives rise to many powerful operators and applications, and that could be very useful for 3D images. In this paper we propose a simple-to-write algorithm to compute the tree of shapes; it works for \nD images and has a quasi-linear complexity when data quantization is low, typically 12~bits or less. To get that result, this paper introduces a novel representation of images that has some amazing properties of continuity, while remaining discrete

    Timing and mechanism of the rise of the Shillong Plateau in the Himalayan foreland

    Get PDF
    The Shillong Plateau (northeastern India) constitutes the only significant topography in the Himalayan foreland. Knowledge of its surface uplift history is key to understanding topographic development and unraveling tectonic–climate–topographic coupling in the eastern Himalaya. We use the sedimentary record of the Himalayan foreland basin north of the Shillong Plateau to show that the paleo-Brahmaputra river was redirected north and west by the rising plateau at 5.2–4.9 Ma. We suggest that onset of plateau uplift is a result of increased fault-slip rates in response to stresses caused by the Indian lithosphere bending beneath the Himalaya

    Constructive links between some morphological hierarchies on edge-weighted graphs

    Get PDF
    International audienceIn edge-weighted graphs, we provide a unified presentation of a family of popular morphological hierarchies such as component trees, quasi flat zones, binary partition trees, and hierarchical watersheds. For any hierarchy of this family, we show if (and how) it can be obtained from any other element of the family. In this sense, the main contribution of this paper is the study of all constructive links between these hierarchies

    When did the Indus River of South-Central Asia take on its “modern” drainage configuration?

    Get PDF
    For sedimentary archives to be used as a record of hinterland evolution, the factors affecting the archive must be known. In addition to tectonics, a number of factors, such as changes in climate and paleodrainage, as well as the degree of diagenesis, influence basin sediments. The Indus River delta-fan system of South-Central Asia records a history of Himalayan evolution, and both the onshore and offshore sedimentary repositories have been studied extensively to research orogenesis. However, a number of unknowns remain regarding this system. This paper seeks to elucidate the paleodrainage of the Indus River, in particular when it took on its modern drainage configuration with respect to conjoinment of the main Himalayan (Punjabi) tributary system with the Indus trunk river. We leverage the fact that the Punjabi tributary system has a significantly different provenance signature than the main trunk Indus River, draining mainly the Indian plate. Therefore, after the Punjabi tributary system joined the Indus River, the proportion of Indian plate material in the repositories downstream of the confluence should have been higher than in the upstream repository. We compared bulk Sr-Nd data and detrital zircon U-Pb data from the Cenozoic upstream peripheral foreland basin and downstream Indus delta and Indus Fan repositories. We determined that throughout Neogene times, repositories below the confluence had a higher proportion of material from the Indian plate than those above the confluence. Therefore, we conclude that the Indus River took on its current configuration, with the Punjabi tributary system draining into the Indus trunk river in the Paleogene, early in the history of the orogen. The exact time when the tributary system joined the Indus should correlate with a shift to more Indian plate input in the downstream repositories only. While the upstream repository records no change in Indian plate input from Eocene to Neogene times, a shift to increased material from the Indian plate occurs at the Eocene−Oligocene boundary in the delta, but sometime between 50 Ma and 40 Ma in the fan. Though further work is required to understand the discrepancy between the two downstream repositories, we can conclude that the tributary system joined the Indus trunk river at or before the start of the Oligocene

    Does pulsed Tibetan deformation correlate with Indian plate motion changes?

    Get PDF
    Models that aim to explain the causes of the significant Indian plate motion acceleration around 70 Ma, and the subsequent deceleration around 52 Ma predict different scenarios regarding crustal shortening of the Tibetan Plateau, which can be tested by precisely determining the timing of regional shortening events in Tibet. Here we attempt to determine this timing by presenting a high-resolution magnetostratigraphy of a ∼3.5 km thick sedimentary sequence in the syn-contractional Gonjo Basin, east-central Tibet. We successfully isolated the primary remanence as confirmed by positive fold and reversal tests. Correlation to the geomagnetic polarity time scale reveals a 69–41.5 Ma age for the Gonjo Basin sedimentary succession. Average sedimentation rates indicate two episodes of enhanced sediment accumulation rate at 69–64 Ma and 52–48 Ma, which coincide with periods of vertical axis rotation recorded in the basin fill. This coincidence suggests a tectonic cause, which given regional structures we interpret as shortening pulses. Our results are similar to those from basins elsewhere in southern, central and northern Tibet, suggesting plateau-wide, synchronous shortening pulses at ∼69–64 Ma and ∼52–48 Ma. These pulses are synchronous with major acceleration and deceleration of India-Asia convergence rate, suggesting that both the acceleration and deceleration of India-Asia convergence may be associated with enhanced crustal deformation in Tibet, which we use to evaluate previous dynamic models explaining the Indian plate motion changes and India-Asia collision processes

    Spatial and temporal trends in exhumation of the Eastern Himalaya and syntaxis as determined from a multitechnique detrital thermochronological study of the Bengal Fan

    Get PDF
    The Bengal Fan provides a Neogene record of Eastern and Central Himalaya exhumation. We provide the first detrital thermochronological study (apatite and rutile U-Pb, mica Ar-Ar, zircon fission track) of sediment samples collected during International Ocean Discovery Program (IODP) Expedition 354 to the mid−Bengal Fan. Our data from rutile and zircon fission-track thermochronometry show a shift in lag times over the interval 5.59−3.47 Ma. The oldest sample with a lag time of 6 m.y.) has a depositional age of 5.59−4.50 Ma, and the zircon and rutile populations then show a static peak until >12 Ma. This interval, from 5.59−4.50 Ma to >12 Ma, is most easily interpreted as recording passive erosion of the Greater Himalaya. However, single grains with lag times of <4 m.y., but with high analytical uncertainty, are recorded over this interval. For sediments older than 10 Ma, these grains were derived from the Greater Himalaya, which was exhuming rapidly until ca. 14 Ma. In sediments younger than 10 Ma, these grains could represent slower, yet still rapid, exhumation of the syntaxial antiform to the south of the massif. Lag times <1 m.y. are again recorded from 14.5 Ma to the base of the studied section at 17 Ma, reflecting a period of Greater Himalayan rapid exhumation. Mica 40Ar/39Ar and apatite U-Pb data are not sensitive to syntaxial exhumation: We ascribe this to the paucity of white mica in syntaxial lithologies, and to high levels of common Pb, resulting in U-Pb ages associated with unacceptably high uncertainties, respectively

    How Mistimed and Unwanted Pregnancies Affect Timing of Antenatal Care Initiation in three Districts in Tanzania

    Get PDF
    Early antenatal care (ANC) initiation is a doorway to early detection and management of potential complications associated with pregnancy. Although the literature reports various factors associated with ANC initiation such as parity and age, pregnancy intentions is yet to be recognized as a possible predictor of timing of ANC initiation. Data originate from a cross-sectional household survey on health behaviour and service utilization patterns. The survey was conducted in 2011 in Rufiji, Kilombero and Ulanga districts in Tanzania on 910 women of reproductive age who had given birth in the past two years. ANC initiation was considered to be early only if it occurred in the first trimester of pregnancy gestation. A recently completed pregnancy was defined as mistimed if a woman wanted it later, and if she did not want it at all the pregnancy was termed as unwanted. Chisquare was used to test for associations and multinomial logistic regression was conducted to examine how mistimed and unwanted pregnancies affect timing of ANC initiation. Although 49.3% of the women intended to become pregnant, 50.7% (34.9% mistimed and 15.8% unwanted) became pregnant unintentionally. While ANC initiation in the 1st trimester was 18.5%, so was 71.7% and 9.9% in the 2nd and 3rd trimesters respectively. Multivariate analysis revealed that ANC initiation in the 2nd trimester was 1.68 (95% CI 1.10‒2.58) and 2.00 (95% CI 1.05‒3.82) times more likely for mistimed and unwanted pregnancies respectively compared to intended pregnancies. These estimates rose to 2.81 (95% CI 1.41‒5.59) and 4.10 (95% CI 1.68‒10.00) respectively in the 3rd trimester. We controlled for gravidity, age, education, household wealth, marital status, religion, district of residence and travel time to a health facility. Late ANC initiation is a significant maternal and child health consequence of mistimed and unwanted pregnancies in Tanzania. Women should be empowered to delay or avoid pregnancies whenever they need to do so. Appropriate counseling to women, especially those who happen to conceive unintentionally is needed to minimize the possibility of delaying ANC initiation.\u

    Low-temperature thermochronology of the Indus Basin in central Ladakh, northwest India: implications of Miocene–Pliocene cooling in the India-Asia collision zone

    Get PDF
    The India‐Asia collision zone in Ladakh, northwest India, records a sequence of tectono‐thermal events in the interior of the Himalayan orogen following the intercontinental collision between India and Asia in early Cenozoic time. We present zircon fission‐track, and zircon and apatite (U‐Th)/He thermochronometric data from the Indus Basin sedimentary rocks that are exposed along the strike of the collision zone in central Ladakh. These data reveal a post‐depositional Miocene–Pliocene (~22–4 Ma) cooling signal along the India‐Asia collision zone in northwest India. Our ZFT cooling ages indicate that maximum basin temperatures exceeded 200 °C but stayed below 280–300 °C in the stratigraphically deeper marine and continental strata. Thermal modeling of zircon and apatite (U‐Th)/He cooling ages suggests post‐depositional basin cooling initiated in Early Miocene time by ~22–20 Ma, occurred throughout the basin across zircon (U‐Th)/He partial retention temperatures from ~20–10 Ma, and continued in the Pliocene time until at least ~4 Ma. We attribute the burial of the Indus Basin to sedimentation and movement along the regional Great Counter thrust. The ensuing Miocene–Pliocene cooling resulted from erosion by the Indus River that transects the basin. An approximately coeval cooling signal is well documented east of the study area, along the collision zone in south Tibet. Our new data provide a regional framework upon which future studies can explore the possible interrelationships between tectonic, geodynamic and geomorphologic factors contributing to Miocene–Pliocene cooling along the India‐Asia collision zone from NW India to south Tibet
    corecore