191 research outputs found

    Development of an advanced Compton camera with gaseous TPC and scintillator

    Full text link
    A prototype of the MeV gamma-ray imaging camera based on the full reconstruction of the Compton process has been developed. This camera consists of a micro-TPC that is a gaseous Time Projection Chamber (TPC) and scintillation cameras. With the information of the recoil electrons and the scattered gamma-rays, this camera detects the energy and incident direction of each incident gamma-ray. We developed a prototype of the MeV gamma-ray camera with a micro-TPC and a NaI(Tl) scintillator, and succeeded in reconstructing the gamma-rays from 0.3 MeV to 1.3 MeV. Measured angular resolutions of ARM (Angular Resolution Measure) and SPD (Scatter Plane Deviation) for 356 keV gamma-rays were 1818^\circ and 3535^\circ, respectively.Comment: 4 pages, 5 figures. Proceedings of the 6th International Workshop On Radiation Imaging Detector

    DIOS: the dark baryon exploring mission

    Full text link
    DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small satellite aiming for a launch around 2020 with JAXA's Epsilon rocket. Its main aim is a search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy of redshifted emission lines from OVII and OVIII ions. The superior energy resolution of TES microcalorimeters combined with a very wide field of view (30--50 arcmin diameter) will enable us to look into gas dynamics of cosmic plasmas in a wide range of spatial scales from Earth's magnetosphere to unvirialized regions of clusters of galaxies. Mechanical and thermal design of the spacecraft and development of the TES calorimeter system are described. We also consider revising the payload design to optimize the scientific capability allowed by the boundary conditions of the small mission.Comment: 10 pages, 11 figures, Proceedings of the SPIE Astronomical Instrumentation : Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ra

    Flood Risk Management: An Illustrative Approach

    Get PDF
    Widespread flooding with significant damage in many countries, such as the Philippines in 2013, highlights the ongoing need for effective flood risk management (FRM). This hinges on comprehensive access to and dissemination of information about the elements and the people at risk. Simulations, real-time graphs, and maps illustrate the spatial distribution of flood risks, spatial allocation and dissemination of flood effects, if flood risk reduction measures are not implemented, as well as the benefits to be derived from the effective implementation and maintenance of flood risk management measures not realized. Using precipitation, river water, and tide levels, a real-time monitoring site was set up for the Shirakawa River, Kumamoto, Japan. The data gathered from the July 2012 flood event is used as a demonstrator, illustrating a flood event as well as how to utilize the information provided on this site to determine the future time and possibility of flooding. Additionally, an electronically generated flood hazard map making process is being developed for distribution across Japan. These illustrative approaches can be utilized in cities and communities around the globe

    Studies of the performance of different front-end systems for flat-panel multi-anode PMTs with CsI(Tl) scintillator arrays

    Full text link
    We have studied the performance of two different types of front-end systems for our gamma camera based on Hamamatsu H8500 (flat-panel 64 channels multi-anode PSPMT) with a CsI(Tl) scintillator array. The array consists of 64 pixels of 6×6×20mm36\times6\times20{\rm mm}^3 which corresponds to the anode pixels of H8500. One of the system is based on commercial ASIC chips in order to readout every anode. The others are based on resistive charge divider network between anodes to reduce readout channels. In both systems, each pixel (6mm) was clearly resolved by flood field irradiation of 137^{137}Cs. We also investigated the energy resolution of these systems and showed the performance of the cascade connection of resistive network between some PMTs for large area detectors.Comment: 9 pages, 6 figures, proceedings of the 7th International Workshop on Radiation Imaging Detectors (IWORID7), submitted to NIM

    Development of an ASD IC for the Micro Pixel Chamber

    Full text link
    A new amplifier-shaper-discriminator (ASD) chip was designed and manufactured for the Micro Pixel Chamber (μ\mu-PIC). The design of this ASD IC is based on the ASD IC (TGC-ASD) for the Thin Gap Chamber in the LHC Atlas Experiment. The decay time constant of the preamplifier is 5-times longer than that of the TGC-ASD, and some other modifications have been made in order to improve the signal-to-noise ratio of the μ\mu-PIC. The ASD IC uses SONY Analog Master Slice bipolar technology. The IC contains 4 channels in a QFP48 package. The decay time constant of the preamplifier is 80 ns and its gain is approximately 0.8 V/pC. The output from the preamplifier is received by a shaper (main-amplifier) with a gain of 7. A baseline restoration circuit is incorporated in the main-amplifier, and the current used for the baseline restoration is 5-times smaller than that of the TGC-ASD. The threshold voltage for the discriminator section is common to the 4 channels and their digital output level is LVDS-compatible. The ASD IC also has an analog output of the preamplifier. The equivalent noise charge at the input capacitance of 50 pF is around 2000 electrons. The power dissipation with LVDS outputs (100 Ω\Omega load) is 57 mW/ch. Using this ASD, the analog output voltage from the signal of the μ\mu-PIC is about 2-times higher than the case of using the TGC-ASD.As a consequence, the MIPs tracking performance of the Time Projection Chamber (TPC) with the μ\mu-PIC was improved.The performance of the ASD IC and an improved tracking performance of the TPC are reported.Comment: 6 pages, 14 figures, submitted for IEEE/TNS 200

    Update on rare epithelial ovarian cancers: based on the Rare Ovarian Tumors Young Investigator Conference

    Get PDF
    There has been significant progress in the understanding of the pathology and molecular biology of rare ovarian cancers, which has helped both diagnosis and treatment. This paper provides an update on recent advances in the knowledge and treatment of rare ovarian cancers and identifies gaps that need to be addressed by further clinical research. The topics covered include: low-grade serous, mucinous, and clear cell carcinomas of the ovary. Given the molecular heterogeneity and the histopathological rarity of these ovarian cancers, the importance of designing adequately powered trials or finding statistically innovative ways to approach the treatment of these rare tumors has been emphasized. This paper is based on the Rare Ovarian Tumors Conference for Young Investigators which was presented in Tokyo 2015 prior to the 5th Ovarian Cancer Consensus Conference of the Gynecologic Cancer InterGroup (GCIG)
    corecore