11 research outputs found

    Pembuatan Bioetanol dari Limbah Padat Sagu Menggunakan Enzim Selulase dan Yeast Saccharomyces Cerevisiae dengan Proses Simultaneous Sacharificatian And Fermentation (SSF) dengan Variasi Konsentrasi Substrat dan Volume Inokulum

    Full text link
    Bioethanol is a renewable alternative energy source that can be used as an alternative fuel . One material that has potential as bioethanol feedstock is a solid waste sago , which is the sago industry solid waste that has not been optimally dimanfatkan . The content of cellulose in the solid waste can be converted into bioethanol sago by using simultaneous saccharification and fermentation ( SFS ) process . This research aims to find out how much solid waste can be converted into bioethanol sago with variation of substrate concentration and volume of inoculum , and to determine the influence of substrate concentration and volume of inoculum at the SFS . The variation of this research are the substrate concentration 40 g , 60 g and 80 g and volume variations of inoculum 10 % and 12.5 % at the fermentation time for 96 hours at pH optimum of 5. The process of saccharification uses cellulase enzymes and Saccharomyces cervisiae yeast for the fermentation process. The samples were conducted by using alcoholmeter . The results of this research showed that the highest ethanol which obtained at the SFS process using cellulase enzyme and Saccharomyces cervisiae yeast reached 8 % for 72 hours fermentation time, the variation of the substrate concentration 80 g and 12.5 % inoculum volum

    Heterologous expression of cytotoxic sesquiterpenoids from the medicinal mushroom Lignosus rhinocerotis in yeast

    Get PDF
    Background: Genome mining facilitated by heterologous systems is an emerging approach to access the chemical diversity encoded in basidiomycete genomes. In this study, three sesquiterpene synthase genes, GME3634, GME3638, and GME9210, which were highly expressed in the sclerotium of the medicinal mushroom Lignosus rhinocerotis, were cloned and heterologously expressed in a yeast system. Results: Metabolite profile analysis of the yeast culture extracts by GC-MS showed the production of several sesquiterpene alcohols (C 15 H 26 O), including cadinols and germacrene D-4-ol as major products. Other detected sesquiterpenes include selina-6-en-4-ol, ß-elemene, ß-cubebene, and cedrene. Two purified major compounds namely (+)-torreyol and a-cadinol synthesised by GME3638 and GME3634 respectively, are stereoisomers and their chemical structures were confirmed by 1 H and 13 C NMR. Phylogenetic analysis revealed that GME3638 and GME3634 are a pair of orthologues, and are grouped together with terpene synthases that synthesise cadinenes and related sesquiterpenes. (+)-Torreyol and a-cadinol were tested against a panel of human cancer cell lines and the latter was found to exhibit selective potent cytotoxicity in breast adenocarcinoma cells (MCF7) with IC 50 value of 3.5 ± 0.58 µg/ml while a-cadinol is less active (IC 50 = 18.0 ± 3.27 µg/ml). Conclusions: This demonstrates that yeast-based genome mining, guided by transcriptomics, is a promising approach for uncovering bioactive compounds from medicinal mushrooms

    [Leis, etc., sobre cemiterios]

    No full text

    A genome-wide survey of the secondary metabolite biosynthesis genes in the wheat pathogen Parastagonospora nodorum

    Get PDF
    The model pathogen Parastagonospora nodorum is a necrotroph and the causal agent of the wheat disease Septoria nodorum blotch (SNB). The sequenced P. nodorum genome has revealed that the fungus harbours a large number of secondary metabolite genes. Secondary metabolites are known to play important roles in the virulence of plant pathogens, but limited knowledge is available about the SM repertoire of this wheat pathogen. Here, we review the secondary metabolites that have been isolated from P. nodorum and related species of the same genus and provide an in-depth genome-wide overview of the secondary metabolite gene clusters encoded in the P. nodorum genome. The secondary metabolite gene survey reveals that P. nodorum is capable of producing a diverse range of small molecules and exciting prospects exist for discovery of novel virulence factors and bioactive molecules. © 2014 © 2014 The Author(s). Published by Taylor & Francis

    Functional genomics-guided discovery of a light-activated phytotoxin in the wheat pathogen Parastagonospora nodorum via pathway activation

    No full text
    © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.Parastagonospora nodorum is an important pathogen of wheat. The contribution of secondary metabolites to this pathosystem is poorly understood. A biosynthetic gene cluster (SNOG_08608-08616) has been shown to be upregulated during the late stage of P. nodorum wheat leaf infection. The gene cluster shares several homologues with the Cercospora nicotianae CTB gene cluster encoding the biosynthesis of cercosporin. Activation of the gene cluster by overexpression (OE) of the transcription factor gene (SNOG_08609) in P. nodorum resulted in the production of elsinochrome C, a perelyenequinone phytotoxin structurally similar to cercosporin. Heterologous expression of the polyketide synthase gene elcA from the gene cluster in Aspergillus nidulans resulted in the production of the polyketide precursor nortoralactone common to the cercosporin pathway. Elsinochrome C could be detected on wheat leaves infected with P. nodorum, but not in the elcA disruption mutant. The compound was shown to exhibit necrotic activity on wheat leaves in a light-dependent manner. Wheat seedling infection assays showed that ?elcA exhibited reduced virulence compared with wild type, while infection by an OE strain overproducing elsinochrome C resulted in larger lesions on leaves. These data provided evidence that elsinochrome C contributes to the virulence of P. nodorum against wheat

    Exploring the biological roles of Dothideomycetes ABC proteins: Leads from their phylogenetic relationships with functionally-characterized Ascomycetes homologs

    No full text
    corecore