488 research outputs found
Sodium Bose-Einstein Condensates in an Optical Lattice
The phase transition from a superfluid to a Mott insulator has been observed
in a Na Bose-Einstein condensate. A dye laser detuned nm red
of the Na SP transition was used to form the three
dimensional optical lattice. The heating effects of the small detuning as well
as the three-body decay processes constrained the timescale of the experiment.
Certain lattice detunings were found to induce a large loss of atoms. These
loss features were shown to be due to photoassociation of atoms to vibrational
levels in the Na state.Comment: Figures somewhat compromised due to size reductio
Efficient magneto-optical trapping of Yb atoms with a violet laser diode
We report the first efficient trapping of rare-earth Yb atoms with a
high-power violet laser diode (LD). An injection-locked violet LD with a 25 mW
frequency-stabilized output was used for the magneto-optical trapping (MOT) of
fermionic as well as bosonic Yb isotopes. A typical number of
atoms for Yb with a trap density of cm was
obtained. A 10 mW violet external-cavity LD (ECLD) was used for the
one-dimensional (1D) slowing of an effusive Yb atomic beam without a Zeeman
slower resulting in a 35-fold increase in the number of trapped atoms. The
overall characteristics of our compact violet MOT, e.g., the loss time of 1 s,
the loading time of 400 ms, and the cloud temperature of 0.7 mK, are comparable
to those in previously reported violet Yb MOTs, yet with a greatly reduced cost
and complexity of the experiment.Comment: 5 pages, 3 figures, 1 table, Phys. Rev. A (to be published
Highly efficient synthesis of the tricyclic core of Taxol by cascade metathesis
An efficient enantioselective synthesis of the ABC tricyclic core of the anticancer drug Taxol is reported. The key step of this synthesis is a cascade metathesis reaction, which leads in one operation to the required tricycle if appropriate fine-tuning of the dienyne precursor is performed
Production of cold molecules via magnetically tunable Feshbach resonances
Magnetically tunable Feshbach resonances were employed to associate cold
diatomic molecules in a series of experiments involving both atomic Bose as
well as two spin component Fermi gases. This review illustrates theoretical
concepts of both the particular nature of the highly excited Feshbach molecules
produced and the techniques for their association from unbound atom pairs.
Coupled channels theory provides the rigorous formulation of the microscopic
physics of Feshbach resonances in cold gases. Concepts of dressed versus bare
energy states, universal properties of Feshbach molecules, as well as the
classification in terms of entrance- and closed-channel dominated resonances
are introduced on the basis of practical two-channel approaches. Their
significance is illustrated for several experimental observations, such as
binding energies and lifetimes with respect to collisional relaxation.
Molecular association and dissociation are discussed in the context of
techniques involving linear magnetic field sweeps in cold Bose and Fermi gases
as well as pulse sequences leading to Ramsey-type interference fringes. Their
descriptions in terms of Landau-Zener, two-level mean field as well as beyond
mean field approaches are reviewed in detail, including the associated ranges
of validity.Comment: 50 pages, 26 figures, to be published in Reviews of Modern Physics,
final version with updated reference
Yeast Methylotrophy and Autophagy in a Methanol-Oscillating Environment on Growing Arabidopsis thaliana Leaves
The yeast Candida boidinii capable of growth on methanol proliferates and survives on the leaves of Arabidopsis thaliana. The local methanol concentration at the phyllosphere of growing A. thaliana exhibited daily periodicity, and yeast cells responded by altering both the expression of methanol-inducible genes and peroxisome proliferation. Even under these dynamically changing environmental conditions, yeast cells proliferated 3 to 4 times in 11 days. Among the C1-metabolic enzymes, enzymes in the methanol assimilation pathway, but not formaldehyde dissimilation or anti-oxidizing enzymes, were necessary for yeast proliferation at the phyllosphere. Furthermore, both peroxisome assembly and pexophagy, a selective autophagy pathway that degrades peroxisomes, were necessary for phyllospheric proliferation. Thus, the present study sheds light on the life cycle and physiology of yeast in the natural environment at both the molecular and cellular levels
Non-classical correlations from dissociation time entanglement
We discuss a strongly entangled two-particle state of motion that emerges
naturally from the double-pulse dissociation of a diatomic molecule. This
state, which may be called dissociation-time entangled, permits the unambiguous
demonstration of non-classical correlations by violating a Bell inequality
based on switched single particle interferometry and only position
measurements. We apply time-dependent scattering theory to determine the
detrimental effect of dispersion. The proposed setup brings into reach the
possibility of establishing non-classical correlations with respect to system
properties that are truly macroscopically distinct.Comment: 8 pages, 2 figures; corresponds to published versio
Stabilization by Fusion to the C-terminus of Hyperthermophile Sulfolobus tokodaii RNase HI: A Possibility of Protein Stabilization Tag
RNase HI from the hyperthermophile Sulfolobus tokodaii (Sto-RNase HI) is stabilized by its C-terminal residues. In this work, the stabilization effect of the Sto-RNase HI C-terminal residues was investigated in detail by thermodynamic measurements of the stability of variants lacking the disulfide bond (C58/145A), or the six C-terminal residues (ΔC6) and by structural analysis of ΔC6. The results showed that the C-terminal does not affect overall structure and stabilization is caused by local interactions of the C-terminal, suggesting that the C-terminal residues could be used as a “stabilization tag.” The Sto-RNase HI C-terminal residues (-IGCIILT) were introduced as a tag on three proteins. Each chimeric protein was more stable than its wild-type protein. These results suggested the possibility of a simple stabilization technique using a stabilization tag such as Sto-RNase HI C-terminal residues
- …