332 research outputs found

    Cooperative Effect of Coulomb Interaction and Electron-Phonon Coupling on the Heavy Fermion State in the Two-Orbital Periodic Anderson Model

    Full text link
    We investigate the two-orbital periodic Anderson model, where the local orbital fluctuations of f-electrons couple with a two-fold degenerate Jahn-Teller phonon, by using the dynamical mean-field theory. It is found that the heavy fermion state caused by the Coulomb interaction between f-electrons U is largely enhanced due to the electron-phonon coupling g, in contrast to the case with the single-orbital periodic Anderson model where the effects of U and g compete to each other. In the heavy fermion state for large UU and g, both the orbital and lattice fluctuations are enhanced, while the charge (valence) and spin fluctuations are suppressed. In the strong coupling regime, a sharp soft phonon mode with a large spectral weight is observed for small U, while a broad soft phonon mode with a small spectral weight is observed for large U. The cooperative effect of U and g for half-filling with two f-electrons per atom nf=2n_f=2 is more pronounced than that for quarter-filling with nf=1n_f=1.Comment: 8 pages, 11 figures, accepted for publication in JPS

    Heavy-Electron Formation and Bipolaronic Transition in the Anharmonic Holstein Model

    Full text link
    The emergence of the bipolaronic phase and the formation of the heavy-electron state in the anharmonic Holstein model are investigated using the dynamical mean-field theory in combination with the exact diagonalization method. For a weak anharmonicity, it is confirmed that the first-order polaron-bipolaron transition occurs from the observation of a discontinuity in the behavior of several physical quantities. When the anharmonicity is gradually increased, the polaron-bipolaron transition temperature is reduced as well as the critical values of the electron-phonon coupling constant for polaron-bipolaron transition. For a strong anharmonicity, the polaron-bipolaron transition eventually changes to a crossover behavior. The effect of anharmonicity on the formation of the heavy-electron state near the polaron-bipolaron transition and the crossover region is discussed in detail.Comment: 11 pages, 13 figure

    Kondo Effect in an Electron System with Dynamical Jahn-Teller Impurity

    Full text link
    We investigate how Kondo phenomenon occurs in the Anderson model dynamically coupled with local Jahn-Teller phonons. It is found that the total angular moment composed of electron pseudo-spin and phonon angular moments is screened by conduction electrons. Namely, phonon degrees of freedom essentially contribute to the formation of singlet ground state. A characteristic temperature of the Kondo effect due to dynamical Jahn-Teller phonons is explained by an effective ss-dd Hamiltonian with anisotropic exchange interaction obtained from the Jahn-Teller-Anderson model in a non-adiabatic region.Comment: 5 pages, 3 figure

    First Order Bipolaronic Transition at Finite Temperature in the Holstein Model

    Full text link
    We investigate the Holstein model by using the dynamical mean-field theory combined with the exact diagonalization method. Below a critical temperature Tcr, a coexistence of the polaronic and the bipolaronic solutions is found for the same value of the electron-phonon coupling $ in the range gc1(T)<g<gc2(T). In the coexistence region, the system shows a first order phase transition from the bipolaronic to the polaronic states as T decreases at T=Tp(<Tcr), where the double occupancy and the lattice fluctuation together with the anharmonicity of the effective ion potential change discontinuously without any symmetry breaking. The obtained bipolaronic transition seems to be consistent with the rattling transition in the beta-pyrochlore oxide KOs2O6.Comment: 5 pages, 5 figures, J. Phys. Soc. Jpn. 79 (2010) 09370

    Local Heavy Quasiparticle in Four-Level Kondo Model

    Full text link
    An impurity four-level Kondo model, in which an ion is tunneling among 4-stable points and interacting with surrounding conduction electrons, is investigated using both perturbative and numerical renormalization group methods. The results of numerical renormalization group studies show that it is possible to construct the ground state wavefunction including the excited ion states if we take into account the interaction between the conduction electrons and the ion. The resultant effective mass of quasiparticles is moderately enhanced. This result offers a good explanation for the enhanced and magnetically robust Sommerfeld coefficient observed in SmOs4_4Sb12_{12}, some other filled-skutterudites, and clathrate compounds.Comment: 9 pages, 7 figures. Added references and "Note added

    Strong-Coupling Theory of Rattling-Induced Superconductivity

    Full text link
    In order to clarify the mechanism of the enhancement of superconducting transition temperature TcT_{\rm c} due to anharmonic local oscillation of a guest ion in a cage composed of host atoms, i.e., {\it rattling}, we analyze the anharmonic Holstein model by applying the Migdal-Eliashberg theory. From the evaluation of the normal-state electron-phonon coupling constant, it is found that the strong coupling state is developed, when the bottom of a potential for the guest ion becomes wide and flat. Then, TcT_{\rm c} is enhanced with the increase of the anharmonicity in the potential, although TcT_{\rm c} is rather decreased when the potential becomes a double-well type due to very strong anharmonicity. From these results, we propose a scenario of anharmonicity-controlled strong-coupling tendency for superconductivity induced by rattling. We briefly discuss possible relevance of the present scenario with superconductivity in β\beta-pyrochlore oxides.Comment: 8 pages, 6 figure

    The hydrogen and helium lines of the symbiotic binary Z And during its brightening at the end of 2002

    Full text link
    High resolution observations in the region of the lines Halpha, He II 4686 and Hgamma of the spectrum of the symbiotic binary Z And were performed during its small-amplitude brightening at the end of 2002. The profiles of the hydrogen lines were double-peaked. These profiles give a reason to suppose that the lines can be emitted mainly by an optically thin accretion disc. The Halpha line is strongly contaminated by the emission of the envelope, therefore for consideration of accretion disc properties we use the Hgamma line. The Halpha line had broad wings which are supposed to be determined mostly from radiation damping but high velocity stellar wind from the compact object in the system can also contribute to their appearance. The Hgamma line had a broad emission component which is assumed to be emitted mainly from the inner part of the accretion disc. The line He II 4686 had a broad emission component too, but it is supposed to appear in a region of a high velocity stellar wind. The outer radius of the accretion disc can be calculated from the shift between the peaks. Assuming, that the orbit inclination can ranges from 47^\circ to 76^\circ, we estimate the outer radius as 20 - 50 R_sun. The behaviour of the observed lines can be considered in the framework of the model proposed for interpretation of the line spectrum during the major 2000 - 2002 brightening of this binary.Comment: 19 pages, 5 figures. Accepted for publication in Astronomy Report

    Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A

    Get PDF
    International audienceAims/Hypothesis: Reduced skeletal muscle insulin sensitivity is a feature associated with sustained exposure to excess saturated fatty acids (SFA), whereas mono and polyunsaturated fatty acids (MUFA and PUFA) not only improve insulin sensitivity but blunt SFA-induced insulin resistance. The mechanisms by which MUFAs and PUFAs institute these favourable changes remain unclear, but may involve stimulating insulin signalling by counter-modulation/repression of protein phosphatase 2A (PP2A). This study investigated the effects of oleic acid (OA; a MUFA), linoleic acid (LOA; a PUFA) and palmitate (PA; a SFA) in cultured myotubes and determined whether changes in insulin signalling can be attributed to PP2A regulation. Principal Findings: We treated cultured skeletal myotubes with unsaturated and saturated fatty acids and evaluated insulin signalling, phosphorylation and methylation status of the catalytic subunit of PP2A. Unlike PA, sustained incubation of rat or human myotubes with OA or LOA significantly enhanced Akt-and ERK1/2-directed insulin signalling. This was not due to heightened upstream IRS1 or PI3K signalling nor to changes in expression of proteins involved in proximal insulin signalling, but was associated with reduced dephosphorylation/inactivation of Akt and ERK1/2. Consistent with this, PA reduced PP2Ac demethylation and tyrosine 307 phosphorylation-events associated with PP2A activation. In contrast, OA and LOA strongly opposed these PA-induced changes in PP2Ac thus exerting a repressive effect on PP2A.Conclusions/Interpretation: Beneficial gains in insulin sensitivity and the ability of unsaturated fatty acids to oppose palmitate-induced insulin resistance in muscle cells may partly be accounted for by counter-modulation of PP2A

    Kondo Effect of a Magnetic Ion Vibrating in a Harmonic Potential

    Full text link
    To discuss Kondo effects of a magnetic ion vibrating in the sea of conduction electrons, a generalized Anderson model is derived. The model includes a new channel of hybridization associated with phonon emission or absorption. In the simplest case of the localized electron orbital with the s-wave symmetry, hybridization with p-waves becomes possible. Interesting interplay among the conventional s-wave Kondo effect and the p-wave one and the Yu-Anderson type Kondo effect is found and the ground state phase diagram is determined by using the numerical renormalization group method. Two different types of stable fixed points are identified and the two-channel Kondo fixed points are generically realized on the boundary.Comment: 15 pages, 17 figures, J. Phys. Soc. Jpn. 80 (2011) No.6 to be publishe
    corecore