105 research outputs found

    Testing the Lorentz and CPT Symmetry with CMB polarizations and a non-relativistic Maxwell Theory

    Full text link
    We present a model for a system involving a photon gauge field and a scalar field at quantum criticality in the frame of a Lifthitz-type non-relativistic Maxwell theory. We will show this model gives rise to Lorentz and CPT violation which leads to a frequency-dependent rotation of polarization plane of radiations, and so leaves potential signals on the cosmic microwave background temperature and polarization anisotropies.Comment: 7 pages, 2 figures, accepted on JCAP, a few references adde

    A Single Scalar Field Model of Dark Energy with Equation of State Crossing -1

    Full text link
    In this paper we study the possibility of building models of dark energy with equation of state across -1 and propose explicitly a model with a single scalar field which gives rise to an equation of state larger than -1 in the past and less than -1 at the present time, consistent with the current observations.Comment: 4 pages, 1 figure, the version accepted by JCAP, presentation improved and references adde

    Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2

    Full text link
    Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed matter physics counterpart of relativisticWeyl fermion [13] originally introduced in high energy physics. The Weyl semimetal realized in the TaAs class features multiple Fermi arcs arising from topological surface states [10, 11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20]. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion [21], which does not have counterpart in high energy physics due to the breaking of Lorentz invariance, can emerge as topologically-protected touching between electron and hole pockets. Here, we report direct spectroscopic evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 [22-24]. The topological surface states are confirmed by directly observing the surface states using bulk-and surface-sensitive angle-resolved photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI) pattern between the two putative Fermi arcs in scanning tunneling microscopy (STM). Our work establishes MoTe2 as the first experimental realization of type-II Weyl semimetal, and opens up new opportunities for probing novel phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.Comment: submitted on 01/29/2016. Nature Physics, in press. Spectroscopic evidence of the Fermi arcs from two complementary surface sensitive probes - ARPES and STS. A comparison of the calculated band structure for T_d and 1T' phase to identify the topological Fermi arcs in the T_d phase is also included in the supplementary informatio

    An inflation model with large variations in spectral index

    Get PDF
    Recent fits of cosmological parameters by the Wilkinson Microwave Anisotropy Probe (WMAP) measurement favor a primordial scalar spectrum with varying index. This result, if stands, could severely constrain inflation model buildings. Most extant slow-roll inflation models allow for only a tiny amount of scale variations in the spectrum. We propose in this paper an extra-dimensional inflation model which is natural theoretically and can generate the required variations of the spectral index as implied by the WMAP for suitable choices of parameters.Comment: 5 pages, 3 figures, REVTeX 4. Comments on low CMB quadrupoles added; Version accepted for publication in Phys. Rev.

    Charge fluctuations at the Si-SiO2 interface and its effect on surface recombination in solar cells

    No full text
    The Si–SiO2 interface has and will continue to play a major role in the development of silicon photovoltaic devices. This work presents a detailed examination of how charge at or near this interface influences device performance. New understanding is identified on the effect of charge-induced potential fluctuations at the silicon surface. Such fluctuations have been considered in Si–SiO2 recombination models previously, where a universal value of electrical potential deviation was used to represent the effect. However, the approach disregards that the variation occurs in the charge concentration rather than the potential. We modify the models to accurately reflect fluctuations in external charge, allowing a precise representation of surface recombination velocity, with self-consistent Dit, δp, and δn parameters. Correctly accounting for these parameters can provide insights into the passivation mechanisms which can aid the development of future devices. Using the corrected model, we find that the effect of charge fluctuation at the Si–SiO2 interface is significant for the depletion regime to the weak inversion regime. This indicates that surface passivation dielectrics must operate with charge concentrations in excess of 2x1012 q/cm2 to avoid these effects. TCAD device simulations show that the efficiency of future PERC cells can improve up to 1% absolute when optimally charged dielectric coatings are applied both at the front and rear surfaces
    • …
    corecore