287 research outputs found

    Modelling paradigms for MILD combustion

    Get PDF
    Three-dimensional Direct Numerical Simulation (DNS) data of methane-air MILD combustion is analysed to study the behaviour of MILD reaction zones and to identify a suitable modelling paradigm for MILD combustion. The combustion kinetics in the DNS was modelled using a skeletal mechanism including non-unity Lewis number effects. The reaction zones under MILD conditions are highly convoluted and contorted resulting in their frequent interactions. This leads to combustion occurring over a large portion of the computational volume and giving an appearance of distributed combustion. Three paradigms, standard flamelets, mild flame elements (MIFEs) and PSR, along with a presumed PDF model are explored to estimate the mean and filtered reaction rate in MILD combustion. A beta function is used to estimate the presumed PDF shape. The variations of species mass fractions and reaction rate with temperature computed using thesemodels are compared to the DNS results. The PSR-based model is found to be appropriate, since the conditional averages obtained from the DNS agree well with those obtained using the PSR model. The flamelets model with MIFEs gives only a qualitative agreement because it does not include the effects of reaction zone interactions.YM acknowledges the financial support of Nippon Keidanren and Cambridge Overseas Trust. EPSRC support is acknowledged by NS. This work made use of the facilities of HECToR, the UK’s national high-performance computing service, which is provided by UoE HPCx Ltd at the University of Edinburgh, Cray Inc and NAG Ltd, and funded by the Office of Science and Technology through EPSRCs High End Computing Programme.This is the accepted manuscript. The final version is available from Springer at http://link.springer.com/article/10.1007%2Fs12572-014-0106-x

    Gastrointestinal microorganisms in cats and dogs: a brief review

    Get PDF
    RESUMEN El tracto gastrointestinal (GI) de animales contiene diferentes tipos de microorganismos conocido como la microbiota GI. Por mucho tiempo, la microbiota GI ha generado interés porque los microorganismos GI están involucrados en múltiples procesos fisiológicos en el hospedero, así perpetuando salud o enfermedad. Estudios recientes han demostrado que la microbiota GI de gatos y perros es tan compleja como en humanos y otros animales, revelado con el uso de tecnologías de secuencia modernas y otras técnicas moleculares. La microbiota GI incluye miembros de todos los tres dominios principales de vida (Archaea, Bacterias y Eucariotas), pero las bacterias son el grupo de microorganismos más abundante y metabólicamente activo. El estómago de gatos y perros esta principalmente poblado de Helicobacter spp., el cual en perros puede representar tanto como el 98% de toda la microbiota bacteriana en el estómago. El intestino delgado contiene una microbiota más diversa, conteniendo representantes de al menos cinco diferentes filos bacterianos (principalmente Firmicutes y Bacteroidetes). El intestino grueso contiene el grupo de bacterias más abundante (~1011 células bacterianas por gramo de contenido intestinal), diverso (al menos diez diferentes filos han sido detectados) y metabólicamente relevante en el tracto GI. La mayoría de las bacterias en el intestino grueso son anaerobios estrictos, los cuales dependen de la fermentación de sustancias no digeridas para subsistir. Aunque estudios recientes han dilucidado las complejidades de la microbiota GI en gatos y perros, más investigación todavía es necesaria para encontrar maneras de manipular exitosamente los microorganismos GI para prevenir y/o tratar enfermedades GI. ABSTRACT The gastrointestinal (GI) tract of animals contains different types of microorganisms known as the GI microbiota. The GI microbiota has long been of interest because of its involvement in multiple physiological processes in the host, influencing health or disease. Recent studies have shown that the GI microbiota of cats and dogs is as complex as the one present in humans and other animals, according to state-of-the-art sequencing technologies and other molecular techniques. The GI microbiota includes members of all three main life domains (Archaea, Bacteria, and Eukaryotes), with bacteria being the most abundant and metabolically active group of microorganisms. The stomach of cats and dogs is mainly inhabited by Helicobacter spp., which in dogs may account for as much as 98% of all gastric bacterial microbiota. The small intestine harbors a more diverse microbiota as it contains representatives from at least five bacterial phyla (mainly Firmicutes and Bacteroidetes). The large intestine harbors the most abundant (~1011 bacterial cells per gram of intestinal content), diverse (at least 10 bacterial phyla have been identified) and physiologically relevant group of bacteria in the GI tract. Most bacteria in the large intestine are strict anaerobes that depend on fermentation of non-digested dietary substances to subsist. Although recent studies are shedding light into the complexity of the GI microbiota in cats and dogs, further research is needed to find ways to successfully manipulate GI microorganisms to prevent and/or treat GI diseases

    Faecal microbiota in dogs with multicentric lymphoma

    Get PDF
    Malignant lymphoma B-cell type is the most common canine haematopoietic malignancy. Changes in intestinal microbiota have been implicated in few types of cancer in humans. The aim of this prospective and case-control study was to determine differences in faecal microbiota between healthy control dogs and dogs with multicentric lymphoma. Twelve dogs affected by multicentric, B-cell, stage III-IV lymphoma, and 21 healthy dogs were enrolled in the study. For each dog, faecal samples were analysed by Illumina sequencing of 16S rRNA genes and quantitative PCR (qPCR) for selected bacterial groups. Alpha diversity was significant lower in lymphoma dogs. Principal coordinate analysis plots showed different microbial clustering (P = .001) and linear discriminant analysis effect size revealed 28 differentially abundant bacterial groups in lymphoma and control dogs. The qPCR analysis showed significant lower abundance of Faecalibacterium spp. (q < .001), Fusobacterium spp. (q = .032), and Turicibacter spp. (q = .043) in dogs with lymphoma compared with control dogs. On the contrary, Streptococcus spp. was significantly higher in dogs with lymphoma (q = .041). The dysbiosis index was significantly higher (P < .0001) in dogs with lymphoma. In conclusion, both sequencing and qPCR analyses provided a global overview of faecal microbial communities and showed significant differences in the microbial communities of dogs presenting with multicentric lymphoma compared with healthy control dogs.dog

    Detection and Characterization of Oncogene Mutations in Preneoplastic and Early Neoplastic Lesions

    Get PDF
    While it has been nearly 30 years since its discovery, the ras family of genes has not yet lost its impact on basic and clinical oncology. These genes remain central to the field of molecular oncology as tools for investigating carcinogenesis and oncogenic signaling, as powerful biomarkers for the identification of those who have or are at high risk of developing cancer, and as oncogene targets for the design and development of new chemotherapeutic drugs. Mutational activation of the K-RAS proto-oncogene is an early event in the development and progression of the colorectal, pancreatic, and lung cancers that are the major causes of cancer death in the world. The presence of point mutational "hot spots" at sites necessary for the activation of this proto-oncogene has led to the development of a number of highly sensitive PCR-based methods that are feasible for the early detection of K-RAS oncogene mutations in the clinical setting. In light of these facts, mutation at the K-RAS oncogene has the potential to serve as a useful biomarker in the early diagnosis and risk assessment of cancers with oncogenic ras signaling. This chapter describes a highly sensitive method for detecting mutant K-RAS, enriched PCR, and its application to early detection of alterations in this oncogene in preneoplastic and early neoplastic lesions of the colon and rectum
    corecore