5,921 research outputs found
Resection Cavity Contraction Effects in the Use of Radioactive Sources (1-25 versus Cs-131) for Intra-Operative Brain Implants.
Background and Objectives Intra-parenchymal brain surgical resection cavities usually contract in volume following low dose rate (LDR) brachytherapy implants. In this study, we systematically modeled and assessed dose variability resulting from such changes for I-125 versus Cs-131 radioactive sources. Methods Resection cavity contraction was modeled based on 95 consecutive patient cases, using surveillance magnetic resonance (MR) images. The model was derived for single point source geometry and then fully simulated in 3D where I-125 or Cs-131 seeds were placed on the surface of an ellipsoidal resection cavity. Dose distribution estimated via TG-43 calculations and biological effective dose (BED) calculations were compared for both I-125 and Cs-131, accounting for resection cavity contractions. Results Resection cavity volumes were found to contract with an effective half-life of approximately 3.4 months (time to reach 50% of maximum volume contraction). As a result, significant differences in dose distributions were noted between I-125 and Cs-131 radioactive sources. For example, when comparing with static volume, assuming no contraction effect, I-125 exhibited a 31.8% and 30.5% increase in D90 and D10 values (i.e., the minimal dose to 90% and 10% of the volume respectively) in the peripheral target areas over the follow-up period of 20.5 months. In contrast, Cs-131 seeds only exhibited a 1.44% and 0.64% increase in D90 and D10 values respectively. Such discrepancy is likewise similar for BED calculations. Conclusion Resection cavity contractions affects Cs-131 dose distribution significantly less than that of I-125 for permanent brain implants. Care must be taken to account for cavity contractions when prescribing accumulative doses of a radioactive source in performing the brain implant procedures
Neutrino Phenomenology in a 3+1+1 Framework
Evidence continues to grow in the MiniBooNE (MB) antineutrino mode supporting
a low-energy excess compatible with the MB neutrino mode and possibly also
confirming the results of the LSND experiment. At least one sterile neutrino is
required to explain the anomalies consistent with the observations of other
experiments. At the same time, there is a strong tension between the positive
signals of LSND and MB and the null results of nu_e and nu_mu disappearance
experiments. We explore a scenario, first proposed in \cite{Nelson:2010hz},
where the presence of an additional heavy sterile neutrino (with mass well
above an eV) can alleviate tension between LSND, MB and the null results of
disappearance experiments. We compare and contrast this 3+1+1 scenario with the
more standard 3+1 scenario and carry out global fits to all oscillation data
including new 2011 MB anti-nu data. We find that the tension can be somewhat
alleviated and that a phenomenologically viable window for the heavy neutrino,
consistent with rare decays and BBN constraints, can be found if the fifth
neutrino has a mass of order 0.3 - 10 GeV. We also find, however, that the 2011
MB anti-nu data exacerbates the tension with null experiments in both the 3+1
and 3+1+1 models when the lowest energy bins are included, resulting in little
improvement in the global fit. We also discuss the implications of an
additional neutrino for the reactor and gallium anomalies, and show that an
oscillation explanation of the anomalies is disfavored by cosmological
considerations, direct searches, and precision electroweak tests.Comment: 22 pages, 5 figures; replaced to reflect journal versio
Decoherence in a superconducting flux qubit with a pi-junction
We consider the use of a pi-junction for flux qubits to realize degenerate
quantum levels without external magnetic field. On the basis of the
Caldeira-Leggett model, we derive an effective spin-Boson model, and study
decoherece of this type of qubits. We estimate the dephasing time by using
parameters from recent experiments of SIFS junctions, and show that high
critical current and large subgap resistance are required for the pi-junction
to realize a long coherent time.Comment: 5 pages, 2 figure
A review of Multi-Agent Simulation Models in Agriculture
Multi-Agent Simulation (MAS) models are intended to capture emergent properties of complex systems that are not amenable to equilibrium analysis. They are beginning to see some use for analysing agricultural systems. The paper reports on work in progress to create a MAS for specific sectors in New Zealand agriculture. One part of the paper focuses on options for modelling land and other resources such as water, labour and capital in this model, as well as markets for exchanging resources and commodities. A second part considers options for modelling agent heterogeneity, especially risk preferences of farmers, and the impacts on decision-making. The final section outlines the MAS that the authors will be constructing over the next few years and the types of research questions that the model will help investigate.multi-agent simulation models, modelling, agent-based model, cellular automata, decision-making, Crop Production/Industries, Environmental Economics and Policy, Farm Management, Land Economics/Use, Livestock Production/Industries,
Learning physics in context: a study of student learning about electricity and magnetism
This paper re-centres the discussion of student learning in physics to focus
on context. In order to do so, a theoretically-motivated understanding of
context is developed. Given a well-defined notion of context, data from a novel
university class in electricity and magnetism are analyzed to demonstrate the
central and inextricable role of context in student learning. This work sits
within a broader effort to create and analyze environments which support
student learning in the sciencesComment: 36 pages, 4 Figure
Secretome Analysis of Skeletal Myogenesis Using SILAC and Shotgun Proteomics
Myogenesis, the formation of skeletal muscle, is a multistep event that commences with myoblast proliferation, followed by cell-cycle arrest, and finally the formation of multinucleated myotubes via fusion of mononucleated myoblasts. Each step is orchestrated by well-documented intracellular factors, such as cytoplasmic signalling molecules and nuclear transcription factors. Regardless, the key step in getting a more comprehensive understanding of the regulation of myogenesis is to explore the extracellular factors that are capable of eliciting the downstream intracellular factors. This could further provide valuable insight into the acute cellular response to extrinsic cues in maintaining normal muscle development. In this paper, we survey the intracellular factors that respond to extracellular cues that are responsible for the cascades of events during myogenesis: myoblast proliferation, cell-cycle arrest of myoblasts, and differentiation of myoblasts into myotubes. This focus on extracellular perspective of muscle development illustrates our mass spectrometry-based proteomic approaches to identify differentially expressed secreted factors during skeletal myogenesis
Effects of Age and Gender on Physical Performance
Our purpose was to examine the effects of age and gender on physical performance. We assessed a one-hour swimming performance and participation of 4,271 presumably healthy men and women, aged 19–91 years, from the 2001–2003 United States Masters Swimming long-distance (1 h) national competition. The decline in performance with increasing age was found to be quadratic rather than linear. The equation which best fit variation in 1 h swimming distance in meters (m) according to variations in age in years (y) in men was: distance (m) = 4058 + 2.18 age−0.29 age (http://www.acsmmsse.org/pt/re/msse/positionstandards.htm;jsessionid=DiRVACC7YS3mq27s5kV3vwpEVSokmmD1ZJLC7pdnol3KcfoSu0t!1096311956!-949856145!9001!-1), with the same equation for women except that 380 m needed to be subtracted from the calculated value at all ages (about a 10% difference). There was a large overlap in performance between men and women. The overall mean decline in performance with age was about 50% and was parallel in men and women. The mean difference in distance for a 1-year increment in age was −9.7 m at 21 y of age, −21.3 m at 40 y, and −44.5 m at 80 y. Far greater declines of about 96% in numbers participating with advanced age (80 y and over, 4% of peak numbers) were observed than in the 40–49 y age group. In conclusion, the declines in performance were parallel in men and women at all ages, and the 1-year age-related declines in performance were about twice as great at 40 y and more than four-times as great at 80 y than at 20 y of age, with even greater age-related declines in participation being noted for both men and women
- …