238 research outputs found

    Perinatal Outcomes of Small for Gestational Age Neonates Born With an Isolated Single Umbilical Artery

    Get PDF
    Objective: To investigate pregnancy outcomes of small for gestational age (SGA) neonates born with isolated single umbilical artery (iSUA) compared to SGA neonates without iSUA.Study Design: This was a population-based retrospective cohort analysis. The study group was defined as a singleton SGA neonate born with iSUA, while an SGA neonate without iSUA comprised the comparison group. We evaluated adverse perinatal outcomes in all SGA neonates born at the Soroka University Medical Center between the years 1998–2013. Multiple gestations, fetuses with known congenital malformations or chromosomal abnormalities and patients with lack of prenatal care were excluded from the study. Multivariate logistic regression models were constructed to identify independent factors associated with adverse perinatal outcomes.Results: Of 12,915 SGA deliveries, 1.2% (162) were complicated with iSUA. Women in the study group were older with a significantly lower gestational age at delivery compared with the comparison group. Rates of women who conceived after infertility treatments were higher in the study group. Additionally, patients in the study group had significantly higher rates of preterm deliveries, placental abruption, cord prolapse, non-reassuring fetal heart rates and cesarean delivery were noted in the study group. These neonates had a significantly lower birth weight (1988.0 ± 697 vs. 2388.3 ± 481 p < 0.001) and higher rates of low APGAR scores at the first and fifth minutes after birth compared with controls. Perinatal mortality was also found to be significantly higher among SGA neonates complicated with iSUA. Preterm delivery as well as perinatal mortality were found independently associated with iSUA among SGA neonates (aOR 4.01, 95% CI 2.88–5.59, aOR 2.24, 95% CI 1.25–4.01, respectively).Conclusion: SGA pregnancies complicated with iSUA are at higher risk for adverse pregnancy and perinatal outcomes as compared to SGA pregnancies without iSUA

    Efficacy and safety of metabolic interventions for the treatment of severe COVID-19: in vitro, observational, and non-randomized open-label interventional study

    Get PDF
    Background: Viral infection is associated with a significant rewire of the host metabolic pathways, presenting attractive metabolic targets for intervention. Methods: We chart the metabolic response of lung epithelial cells to SARS-CoV-2 infection in primary cultures and COVID-19 patient samples and perform in vitro metabolism-focused drug screen on primary lung epithelial cells infected with different strains of the virus. We perform observational analysis of Israeli patients hospitalized due to COVID-19 and comparative epidemiological analysis from cohorts in Italy and the Veteran's Health Administration in the United States. In addition, we perform a prospective non-randomized interventional open-label study in which 15 patients hospitalized with severe COVID-19 were given 145 mg/day of nanocrystallized fenofibrate added to the standard of care. Results: SARS-CoV-2 infection produced transcriptional changes associated with increased glycolysis and lipid accumulation. Metabolism-focused drug screen showed that fenofibrate reversed lipid accumulation and blocked SARS-CoV-2 replication through a PPARα-dependent mechanism in both alpha and delta variants. Analysis of 3233 Israeli patients hospitalized due to COVID-19 supported in vitro findings. Patients taking fibrates showed significantly lower markers of immunoinflammation and faster recovery. Additional corroboration was received by comparative epidemiological analysis from cohorts in Europe and the United States. A subsequent prospective non-randomized interventional open-label study was carried out on 15 patients hospitalized with severe COVID-19. The patients were treated with 145 mg/day of nanocrystallized fenofibrate in addition to standard-of-care. Patients receiving fenofibrate demonstrated a rapid reduction in inflammation and a significantly faster recovery compared to patients admitted during the same period. Conclusions: Taken together, our data suggest that pharmacological modulation of PPARα should be strongly considered as a potential therapeutic approach for SARS-CoV-2 infection and emphasizes the need to complete the study of fenofibrate in large randomized controlled clinical trials. Funding: Funding was provided by European Research Council Consolidator Grants OCLD (project no. 681870) and generous gifts from the Nikoh Foundation and the Sam and Rina Frankel Foundation (YN). The interventional study was supported by Abbott (project FENOC0003). Clinical trial number: NCT04661930

    Neuroactive steroids in depression and anxiety disorders: Clinical studies

    Get PDF
    Certain neuroactive steroids modulate ligand-gated ion channels via non-genomic mechanisms. Especially 3 alpha-reduced pregnane steroids are potent positive allosteric modulators of the gamma-aminobutyric acid type A (GABA(A)) receptor. During major depression, there is a disequilibrium of 3 alpha-reduced neuroactive steroids, which is corrected by clinically effective pharmacological treatment. To investigate whether these alterations are a general principle of successful antidepressant treatment, we studied the impact of nonpharmacological treatment options on neuroactive steroid concentrations during major depression. Neither partial sleep deprivation, transcranial magnetic stimulation, nor electroconvulsive therapy affected neuroactive steroid levels irrespectively of the response to these treatments. These studies suggest that the changes in neuroactive steroid concentrations observed after antidepressant pharmacotherapy more likely reflect distinct pharmacological properties of antidepressants rather than the clinical response. In patients with panic disorder, changes in neuroactive steroid composition have been observed opposite to those seen in depression. However, during experimentally induced panic induction either with cholecystokinine-tetrapeptide or sodium lactate, there was a pronounced decline in the concentrations of 3 alpha-reduced neuroactive steroids in patients with panic disorder, which might result in a decreased GABAergic tone. In contrast, no changes in neuroactive steroid concentrations could be observed in healthy controls with the exception of 3 alpha,5 alpha-tetrahydrodeoxycorticosterone. The modulation of GABA(A) receptors by neuroactive steroids might contribute to the pathophysiology of depression and anxiety disorders and might offer new targets for the development of novel anxiolytic compounds. Copyright (c) 2006 S. Karger AG, Basel

    Network-Free Inference of Knockout Effects in Yeast

    Get PDF
    Perturbation experiments, in which a certain gene is knocked out and the expression levels of other genes are observed, constitute a fundamental step in uncovering the intricate wiring diagrams in the living cell and elucidating the causal roles of genes in signaling and regulation. Here we present a novel framework for analyzing large cohorts of gene knockout experiments and their genome-wide effects on expression levels. We devise clustering-like algorithms that identify groups of genes that behave similarly with respect to the knockout data, and utilize them to predict knockout effects and to annotate physical interactions between proteins as inhibiting or activating. Differing from previous approaches, our prediction approach does not depend on physical network information; the latter is used only for the annotation task. Consequently, it is both more efficient and of wider applicability than previous methods. We evaluate our approach using a large scale collection of gene knockout experiments in yeast, comparing it to the state-of-the-art SPINE algorithm. In cross validation tests, our algorithm exhibits superior prediction accuracy, while at the same time increasing the coverage by over 25-fold. Significant coverage gains are obtained also in the annotation of the physical network

    Hereditary sensory and autonomic neuropathies: types II, III, and IV

    Get PDF
    The hereditary sensory and autonomic neuropathies (HSAN) encompass a number of inherited disorders that are associated with sensory dysfunction (depressed reflexes, altered pain and temperature perception) and varying degrees of autonomic dysfunction (gastroesophageal reflux, postural hypotention, excessive sweating). Subsequent to the numerical classification of four distinct forms of HSAN that was proposed by Dyck and Ohta, additional entities continue to be described, so that identification and classification are ongoing. As a group, the HSAN are rare diseases that affect both sexes. HSAN III is almost exclusive to individuals of Eastern European Jewish extraction, with incidence of 1 per 3600 live births. Several hundred cases with HSAN IV have been reported. The worldwide prevalence of HSAN type II is very low. This review focuses on the description of three of the disorders, HSAN II through IV, that are characterized by autosomal recessive inheritance and onset at birth. These three forms of HSAN have been the most intensively studied, especially familial dysautonomia (Riley-Day syndrome or HSAN III), which is often used as a prototype for comparison to the other HSAN. Each HSAN disorder is likely caused by different genetic errors that affect specific aspects of small fiber neurodevelopment, which result in variable phenotypic expression. As genetic tests are routinely used for diagnostic confirmation of HSAN III only, other means of differentiating between the disorders is necessary. Diagnosis is based on the clinical features, the degree of both sensory and autonomic dysfunction, and biochemical evaluations, with pathologic examinations serving to further confirm differences. Treatments for all these disorders are supportive

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Enriched Population of PNS Neurons Derived from Human Embryonic Stem Cells as a Platform for Studying Peripheral Neuropathies

    Get PDF
    BACKGROUND: The absence of a suitable cellular model is a major obstacle for the study of peripheral neuropathies. Human embryonic stem cells hold the potential to be differentiated into peripheral neurons which makes them a suitable candidate for this purpose. However, so far the potential of hESC to differentiate into derivatives of the peripheral nervous system (PNS) was not investigated enough and in particular, the few trials conducted resulted in low yields of PNS neurons. Here we describe a novel hESC differentiation method to produce enriched populations of PNS mature neurons. By plating 8 weeks hESC derived neural progenitors (hESC-NPs) on laminin for two weeks in a defined medium, we demonstrate that over 70% of the resulting neurons express PNS markers and 30% of these cells are sensory neurons. METHODS/FINDINGS: Our method shows that the hNPs express neuronal crest lineage markers in a temporal manner, and by plating 8 weeks hESC-NPs into laminin coated dishes these hNPs were promoted to differentiate and give rise to homogeneous PNS neuronal populations, expressing several PNS lineage-specific markers. Importantly, these cultures produced functional neurons with electrophysiological activities typical of mature neurons. Moreover, supporting this physiological capacity implantation of 8 weeks old hESC-NPs into the neural tube of chick embryos also produced human neurons expressing specific PNS markers in vivo in just a few days. Having the enriched PNS differentiation system in hand, we show for the first time in human PNS neurons the expression of IKAP/hELP1 protein, where a splicing mutation on the gene encoding this protein causes the peripheral neuropathy Familial Dysautonomia. CONCLUSIONS/SIGNIFICANCE: We conclude that this differentiation system to produce high numbers of human PNS neurons will be useful for studying PNS related neuropathies and for developing future drug screening applications for these diseases

    Effects of IKAP/hELP1 Deficiency on Gene Expression in Differentiating Neuroblastoma Cells: Implications for Familial Dysautonomia

    Get PDF
    Familial dysautonomia (FD) is a developmental neuropathy of the sensory and autonomous nervous systems. The IKBKAP gene, encoding the IKAP/hELP1 subunit of the RNA polymerase II Elongator complex is mutated in FD patients, leading to a tissue-specific mis-splicing of the gene and to the absence of the protein in neuronal tissues. To elucidate the function of IKAP/hELP1 in the development of neuronal cells, we have downregulated IKBKAP expression in SHSY5Y cells, a neuroblastoma cell line of a neural crest origin. We have previously shown that these cells exhibit abnormal cell adhesion when allowed to differentiate under defined culture conditions on laminin substratum. Here, we report results of a microarray expression analysis of IKAP/hELP1 downregulated cells that were grown on laminin under differentiation or non-differentiation growth conditions. It is shown that under non-differentiation growth conditions, IKAP/hELP1 downregulation affects genes important for early developmental stages of the nervous system, including cell signaling, cell adhesion and neural crest migration. IKAP/hELP1 downregulation during differentiation affects the expression of genes that play a role in late neuronal development, in axonal projection and synapse formation and function. We also show that IKAP/hELP1 deficiency affects the expression of genes involved in calcium metabolism before and after differentiation of the neuroblastoma cells. Hence, our data support IKAP/hELP1 importance in the development and function of neuronal cells and contribute to the understanding of the FD phenotype

    Maternal and offspring intelligence in relation to BMI across childhood and adolescence

    Get PDF
    Objective: The present study tested the association between both mothers’ and offspring’s intelligence and offspring’s body mass index (BMI) in youth. Method: Participants were members of the National Longitudinal Survey of Youth 1979 (NLSY-79) Children and Young Adults cohort (n = 11,512) and their biological mothers who were members of the NLSY-79 (n = 4932). Offspring’s IQ was measured with the Peabody Individual Achievement Test (PIAT). Mothers’ IQ was measured with the Armed Forces Qualification Test (AFQT). A series of regression analyses tested the association between IQ and offspring’s BMI by age group, while adjusting for pre-pregnancy BMI and family SES. The analyses were stratified by sex and ethnicity (non-Black and non-Hispanic, Black, and Hispanic). Results: The following associations were observed in the fully adjusted analyses. For the non-Blacks and non-Hispanics, a SD increment in mothers’ IQ was negatively associated with daughters’ BMI across all age-groups, ranging from β = −0.12 (95% CI −0.22 to −0.02, p = 0.021) in late childhood, to β = −0.17 (95% C.I. −0.27 to −0.07, p = 0001), in early adolescence and a SD increment in boys’ IQ was positively associated with their BMI in early adolescence β = 0.09 (95% CI 0.01–0.18, p = 0.031). For Blacks, there was a non-linear relationship between mothers’ IQ and daughters’ BMI across childhood and between girls’ IQ and BMI across adolescence. There was a positive association between mothers’ IQ and sons’ BMI in early adolescence (β = 0.17, 95% CI 0.02–0.32, p = 0.030). For Hispanic boys, there was a positive IQ-BMI association in late childhood (β = 0.19, 95% CI 0.05–0.33, p = 0.008) and early adolescence (β = 0.17, 95% CI 0.04–0.31, p = 0.014). Conclusion: Mothers’ IQ and offspring’s IQ were associated with offspring’s BMI. The relationships varied in direction and strength across ethnicity, age group and sex. Obesity interventions may benefit from acknowledging the heterogeneous influence that intelligence has on childhood BMI
    • …
    corecore