29,410 research outputs found

    Technical note: Absorption aerosol optical depth components from AERONET observations of mixed dust plumes

    Get PDF
    © Author(s) 2019.Absorption aerosol optical depth (AAOD) as obtained from sun–sky photometer measurements provides a measure of the light-absorbing properties of the columnar aerosol loading. However, it is not an unambiguous aerosol-type-specific parameter, particularly if several types of absorbing aerosols, for instance black carbon (BC) and mineral dust, are present in a mixed aerosol plume. The contribution of mineral dust to total aerosol light absorption is particularly important at UV wavelengths. In this study we refine a lidar-based technique applied to the separation of dust and non-dust aerosol types for the use with Aerosol Robotic Network (AERONET) direct sun and inversion products. We extend the methodology to retrieve AAOD related to non-dust aerosol (AAODnd) and BC (AAODBC). We test the method at selected AERONET sites that are frequently affected by aerosol plumes that contain a mixture of Saharan or Asian mineral dust and biomass-burning smoke or anthropogenic pollution, respectively. We find that aerosol optical depth (AOD) related to mineral dust as obtained with our methodology is frequently smaller than coarse-mode AOD. This suggests that the latter is not an ideal proxy for estimating the contribution of mineral dust to mixed dust plumes. We present the results of the AAODBC retrieval for the selected AERONET sites and compare them to coincident values provided in the Copernicus Atmosphere Monitoring System aerosol reanalysis.We find that modelled and AERONET AAODBC are most consistent for Asian sites or at Saharan sites with strong local anthropogenic sources.Peer reviewe

    Enhanced Macroscopic Quantum Tunneling in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} Intrinsic Josephson Junction Stacks

    Full text link
    We have investigated macroscopic quantum tunneling in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} intrinsic Josephson junctions at millikelvin temperatures using microwave irradiation. Measurements show that the escape rate for uniformly switching stacks of N junctions is about N2N^2 times higher than that of a single junction having the same plasma frequency. We argue that this gigantic enhancement of macroscopic quantum tunneling rate in stacks is boosted by current fluctuations which occur in the series array of junctions loaded by the impedance of the environment.Comment: 4 pages and 5 figure

    h/2eh/2e--Oscillations for Correlated Electron Pairs in Disordered Mesoscopic Rings

    Full text link
    The full spectrum of two interacting electrons in a disordered mesoscopic one--dimensional ring threaded by a magnetic flux is calculated numerically. For ring sizes far exceeding the one--particle localization length L1L_1 we find several h/2eh/2e--periodic states whose eigenfunctions exhibit a pairing effect. This represents the first direct observation of interaction--assisted coherent pair propagation, the pair being delocalized on the scale of the whole ring.Comment: 4 pages, uuencoded PostScript, containing 5 figures

    What can we learn from Dijet suppression at RHIC?

    Full text link
    We present a systematic study of the dijet suppression at RHIC using the VNI/BMS parton cascade. We examine the modification of the dijet asymmetry A_j and the within-cone transverse energy distribution (jet-shape) along with partonic fragmentation distributions z and j_t in terms of: qhat; the path length of leading and sub-leading jets; cuts on the jet energy distributions; jet cone angle and the jet-medium interaction mechanism. We find that A_j is most sensitive to qhat and relatively insensitive to the nature of the jet-medium interaction mechanism. The jet profile is dominated by qhat and the nature of the interaction mechanism. The partonic fragmentation distributions clearly show the jet modification and differentiate between elastic and radiative+elastic modes

    The structure of the ICM from High Resolution SPH simulations

    Full text link
    We present results from a set of high (512^3 effective resolution), and ultra-high (1024^3) SPH adiabatic cosmological simulations of cluster formation aimed at studying the internal structure of the intracluster medium (ICM). We derive a self-consistent analytical model of the structure of the intracluster medium (ICM). We discuss the radial structure and scaling relations expected from purely gravitational collapse, and show that the choice of a particular halo model can have important consequences on the interpretation of observational data. The validity of the approximations of hydrostatic equilibrium and a polytropic equation of state are checked against results of our simulations. The properties of the ICM are fully specified when a 'universal' profile is assumed for either the dark or the baryonic component. We also show the first results from an unprecedented large-scale simulation of 500 Mpc/h and 2 times 512^3 gas and dark matter particles. This experiment will make possible a detailed study of the large-scale distribution of clusters as a function of their X-ray properties.Comment: 5 pages, 3 figures, to appear in the Proceedings of IAU Colloquium 195: "Outskirts of Galaxy Clusters: intense life in the suburbs", Torino Italy, March 200

    Asymptotics of relative heat traces and determinants on open surfaces of finite area

    Full text link
    The goal of this paper is to prove that on surfaces with asymptotically cusp ends the relative determinant of pairs of Laplace operators is well defined. We consider a surface with cusps (M,g) and a metric h on the surface that is a conformal transformation of the initial metric g. We prove the existence of the relative determinant of the pair (Δh,Δg)(\Delta_{h},\Delta_{g}) under suitable conditions on the conformal factor. The core of the paper is the proof of the existence of an asymptotic expansion of the relative heat trace for small times. We find the decay of the conformal factor at infinity for which this asymptotic expansion exists and the relative determinant is defined. Following the paper by B. Osgood, R. Phillips and P. Sarnak about extremal of determinants on compact surfaces, we prove Polyakov's formula for the relative determinant and discuss the extremal problem inside a conformal class. We discuss necessary conditions for the existence of a maximizer.Comment: This is the final version of the article before it gets published. 51 page

    On a theoretical model for d-wave to mixed s- and d-wave transition in cuprate superconductors

    Full text link
    A U(3) model proposed by Iachello for superconductivity in cuprate materials is analyzed. The model consists of s and d pairs (approximated as bosons) in a two-dimensional Fermi system with a surface. The transition occurs between a phase in which the system is a condensate of one of the bosons, and a phase which is a mixture of two types of bosons. In the current work we have investigated the validity of the Bogoliubov approximation, and we used a reduced Hamiltonian to determine a phase diagram, the symmetry of the phases and the temperature dependence of the heat capacity.Comment: 8 pages, 4 figure

    Tunneling of Born-Infeld Strings to D2-Branes

    Get PDF
    A Born-Infeld theory describing a D2-brane coupled to a 4-form RR field strength is considered, and the general solutions of the static and Euclidean time equations are derived and discussed. The period of the bounce solutions is shown to allow a consideration of tunneling and quantum-classical transitions in the sphaleron region. The order of such transitions, depending on the strength of the RR field strength, is determined. A criterion is then derived to confirm these findings.Comment: 20 pages, 7 postscript figures, will appear in NP
    corecore