3,209 research outputs found

    Stacked Dual-Wavelength Near-Infrared Organic Photodetectors

    Get PDF
    Organic near-infrared (NIR) detectors have potential applications in biomedicine, agriculture, and manufacturing industries to identify and quantify materials contactless, in real time and at a low cost. Recently, tunable narrow-band NIR sensors based on charge-transfer state absorption of bulk-heterojunctions embedded into Fabry-Pérot micro-cavities have been demonstrated. In this work, this type of sensor is further miniaturized by stacking two sub-cavities on top of each other. The resulting three-terminal device detects and distinguishes photons at two specific wavelengths. By varying the thickness of each sub-cavity, the detection ranges of the two sub-sensors are tuned independently between 790 and 1180, and 1020 and 1435 nm, respectively, with full-width-at-half-maxima ranging between 35 and 61 nm. Transfer matrix modeling is employed to select and optimize device architectures with a suppressed cross-talk in the coupled resonator system formed by the sub-cavities, and thus to allow for two distinct resonances. These stacked photodetectors pave the way for highly integrated, bi-signal spectroscopy tunable over a broad NIR range. To demonstrate the application potential, the stacked dual sensor is used to determine the ethanol concentration in a water solution

    Role of P-selectin in platelet sequestration in pulmonary capillaries during endotoxemia

    Get PDF
    Background: There is growing evidence that platelets accumulate in the lung and contribute to the pathogenesis of acute lung injury during endotoxemia. The aims of the present study were to localize platelet sequestration in the pulmonary microcirculation and to investigate the role of P-selectin as a molecular mechanism of platelet endothelial cell interaction. Methods: We used in vivo fluorescence microscopy to quantify the kinetics of fluorescently labeled erythrocytes and platelets in alveolar capillary networks in rabbit lungs. Results: Six hours after onset of endotoxin infusion we observed a massive rolling along and firm adherence of platelets to lung capillary endothelial cells whereas under control conditions no platelet sequestration was detected. P-selectin was expressed on the surface of separated platelets which were incubated with endotoxin and in lung tissue. Pretreatment of platelets with fucoidin, a P-selectin antagonist, significantly attenuated the endotoxin-induced platelet rolling and adherence. In contrast, intravenous infusion of fucoidin in endotoxin-treated rabbits did not inhibit platelet sequestration in pulmonary capillaries. Conclusion: We conclude that platelets accumulate in alveolar capillaries following endotoxemia. P-selectin expressed on the surface of platelets seems to play an important role in mediating this platelet-endothelial cell interaction. Copyright (c) 2006 S. Karger AG, Basel

    Heterologous reporter expression in the planarian Schmidtea mediterranea through somatic mRNA transfection

    Get PDF
    Planarians have long been studied for their regenerative abilities. Moving forward, tools for ectopic expression of non-native proteins will be of substantial value. Using a luminescent reporter to overcome the strong autofluorescence of planarian tissues, we demonstrate heterologous protein expression in planarian cells and live animals. Our approach is based on the introduction of mRNA through several nanotechnological and chemical transfection methods. We improve reporter expression by altering untranslated region (UTR) sequences and codon bias, facilitating the measurement of expression kinetics in both isolated cells and whole planarians using luminescence imaging. We also examine protein expression as a function of variations in the UTRs of delivered mRNA, demonstrating a framework to investigate gene regulation at the post-transcriptional level. Together, these advances expand the toolbox for the mechanistic analysis of planarian biology and establish a foundation for the development and expansion of transgenic techniques in this unique model system

    Avalanche amplification of a single exciton in a semiconductor nanowire

    Full text link
    Interfacing single photons and electrons is a crucial ingredient for sharing quantum information between remote solid-state qubits. Semiconductor nanowires offer the unique possibility to combine optical quantum dots with avalanche photodiodes, thus enabling the conversion of an incoming single photon into a macroscopic current for efficient electrical detection. Currently, millions of excitation events are required to perform electrical read-out of an exciton qubit state. Here we demonstrate multiplication of carriers from only a single exciton generated in a quantum dot after tunneling into a nanowire avalanche photodiode. Due to the large amplification of both electrons and holes (> 10^4), we reduce by four orders of magnitude the number of excitation events required to electrically detect a single exciton generated in a quantum dot. This work represents a significant step towards single-shot electrical read-out and offers a new functionality for on-chip quantum information circuits

    Single Spin Asymmetries of Inclusive Hadrons Produced in Electron Scattering from a Transversely Polarized 3^3He Target

    Full text link
    We report the first measurement of target single-spin asymmetries (AN_N) in the inclusive hadron production reaction, e e~+ 3He↑→h+X~^3\text{He}^{\uparrow}\rightarrow h+X, using a transversely polarized 3^3He target. The experiment was conducted at Jefferson Lab in Hall A using a 5.9-GeV electron beam. Three types of hadrons (π±\pi^{\pm}, K±\text{K}^{\pm} and proton) were detected in the transverse hadron momentum range 0.54 <pT<<p_T< 0.74 GeV/c. The range of xFx_F for pions was -0.29 <xF<<x_F< -0.23 and for kaons -0.25 <xF<<x_F<-0.18. The observed asymmetry strongly depends on the type of hadron. A positive asymmetry is observed for π+\pi^+ and K+\text{K}^+. A negative asymmetry is observed for π−\pi^{-}. The magnitudes of the asymmetries follow ∣Aπ−∣<∣Aπ+∣<∣AK+∣|A^{\pi^-}| < |A^{\pi^+}| < |A^{K^+}|. The K−^{-} and proton asymmetries are consistent with zero within the experimental uncertainties. The π+\pi^{+} and π−\pi^{-} asymmetries measured for the 3^3He target and extracted for neutrons are opposite in sign with a small increase observed as a function of pTp_T.Comment: Updated version, submitted to Phys. Rev.

    Double Spin Asymmetries of Inclusive Hadron Electroproductions from a Transversely Polarized 3He^3\rm{He} Target

    Get PDF
    We report the measurement of beam-target double-spin asymmetries (ALTA_\text{LT}) in the inclusive production of identified hadrons, e⃗ \vec{e}~+ 3He↑→h+X~^3\text{He}^{\uparrow}\rightarrow h+X, using a longitudinally polarized 5.9 GeV electron beam and a transversely polarized 3He^3\rm{He} target. Hadrons (π±\pi^{\pm}, K±K^{\pm} and proton) were detected at 16∘^{\circ} with an average momentum =2.35 GeV/c and a transverse momentum (pTp_{T}) coverage from 0.60 to 0.68 GeV/c. Asymmetries from the 3He^3\text{He} target were observed to be non-zero for π±\pi^{\pm} production when the target was polarized transversely in the horizontal plane. The π+\pi^{+} and π−\pi^{-} asymmetries have opposite signs, analogous to the behavior of ALTA_\text{LT} in semi-inclusive deep-inelastic scattering.Comment: Published in PRC (92.015207), nuclear experiment, high-energy experimen

    Single Spin Asymmetries in Charged Kaon Production from Semi-Inclusive Deep Inelastic Scattering on a Transversely Polarized 3He^3{\rm{He}} Target

    Full text link
    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized 3He^3{\rm{He}} target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1<<xbjx_{bj}<<0.4 for K+K^{+} and K−K^{-} production. While the Collins and Sivers moments for K+K^{+} are consistent with zero within the experimental uncertainties, both moments for K−K^{-} favor negative values. The Sivers moments are compared to the theoretical prediction from a phenomenological fit to the world data. While the K+K^{+} Sivers moments are consistent with the prediction, the K−K^{-} results differ from the prediction at the 2-sigma level.Comment: 6 pages, 3 figure

    Measurement of pretzelosity asymmetry of charged pion production in Semi-Inclusive Deep Inelastic Scattering on a polarized 3^3He target

    Full text link
    An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized 3^3He target was performed at Jefferson Lab in the kinematic region of 0.16<x<0.350.16<x<0.35 and 1.4<Q2<2.71.4<Q^2<2.7 GeV2{\rm GeV^2}. The pretzelosity asymmetries on 3^3He, which can be expressed as the convolution of the h1T⊥h^\perp_{1T} transverse momentum dependent distribution functions and the Collins fragmentation functions in the leading order, were measured for the first time. Using the effective polarization approximation, we extracted the corresponding neutron asymmetries from the measured 3^3He asymmetries and cross-section ratios between the proton and 3^3He. Our results show that for both π±\pi^{\pm} on 3^3He and on the neutron the pretzelosity asymmetries are consistent with zero within experimental uncertainties.Comment: 6 pages, 3 figures; enlarged the legends in Fig.3; added 3 citation
    • …
    corecore