5,841 research outputs found

    Conformal quantum mechanics as the CFT1_1 dual to AdS2_2

    Get PDF
    A 0+1-dimensional candidate theory for the CFT1_1 dual to AdS2_2 is discussed. The quantum mechanical system does not have a ground state that is invariant under the three generators of the conformal group. Nevertheless, we show that there are operators in the theory that are not primary, but whose "non-primary character" conspires with the "non-invariance of the vacuum" to give precisely the correlation functions in a conformally invariant theory.Comment: 6 page

    Quantizing Majorana Fermions in a Superconductor

    Full text link
    A Dirac-type matrix equation governs surface excitations in a topological insulator in contact with an s-wave superconductor. The order parameter can be homogenous or vortex valued. In the homogenous case a winding number can be defined whose non-vanishing value signals topological effects. A vortex leads to a static, isolated, zero energy solution. Its mode function is real, and has been called "Majorana." Here we demonstrate that the reality/Majorana feature is not confined to the zero energy mode, but characterizes the full quantum field. In a four-component description a change of basis for the relevant matrices renders the Hamiltonian imaginary and the full, space-time dependent field is real, as is the case for the relativistic Majorana equation in the Majorana matrix representation. More broadly, we show that the Majorana quantization procedure is generic to superconductors, with or without the Dirac structure, and follows from the constraints of fermionic statistics on the symmetries of Bogoliubov-de Gennes Hamiltonians. The Hamiltonian can always be brought to an imaginary form, leading to equations of motion that are real with quantized real field solutions. Also we examine the Fock space realization of the zero mode algebra for the Dirac-type systems. We show that a two-dimensional representation is natural, in which fermion parity is preserved.Comment: 26 pages, no figure

    Anomalous thermoelectric effects of ZrTe5_{5} in and beyond the quantum limit

    Full text link
    Thermoelectric effects are more sensitive and promising probes to topological properties of emergent materials, but much less addressed compared to other physical properties. Zirconium pentatelluride (ZrTe5_{5}) has inspired active investigations recently because of its multiple topological nature. We study the thermoelectric effects of ZrTe5_{5} in a magnetic field and find several anomalous behaviors. The Nernst response has a steplike profile near zero field when the charge carriers are electrons only, suggesting the anomalous Nernst effect arising from a nontrivial profile of Berry curvature. Both the thermopower and Nernst signal exhibit exotic peaks in the strong-field quantum limit. At higher magnetic fields, the Nernst signal has a sign reversal at a critical field where the thermopower approaches to zero. We propose that these anomalous behaviors can be attributed to the Landau index inversion, which is resulted from the competition of the B\sqrt{B} dependence of the Dirac-type Landau bands and linear-BB dependence of the Zeeman energy (BB is the magnetic field). Our understanding to the anomalous thermoelectric properties in ZrTe5_{5} opens a new avenue for exploring Dirac physics in topological materials.Comment: 6 pages, 4 figure

    Providing appropriate social support to prevention of depression for high-anxious sufferers

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordNational Natural Science Foundation of ChinaFundamental Research Funds for the Central Universities, ChinaChina Postdoctoral Science FoundationFund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Provinc
    corecore