5,841 research outputs found
Conformal quantum mechanics as the CFT dual to AdS
A 0+1-dimensional candidate theory for the CFT dual to AdS is
discussed. The quantum mechanical system does not have a ground state that is
invariant under the three generators of the conformal group. Nevertheless, we
show that there are operators in the theory that are not primary, but whose
"non-primary character" conspires with the "non-invariance of the vacuum" to
give precisely the correlation functions in a conformally invariant theory.Comment: 6 page
Quantizing Majorana Fermions in a Superconductor
A Dirac-type matrix equation governs surface excitations in a topological
insulator in contact with an s-wave superconductor. The order parameter can be
homogenous or vortex valued. In the homogenous case a winding number can be
defined whose non-vanishing value signals topological effects. A vortex leads
to a static, isolated, zero energy solution. Its mode function is real, and has
been called "Majorana." Here we demonstrate that the reality/Majorana feature
is not confined to the zero energy mode, but characterizes the full quantum
field. In a four-component description a change of basis for the relevant
matrices renders the Hamiltonian imaginary and the full, space-time dependent
field is real, as is the case for the relativistic Majorana equation in the
Majorana matrix representation. More broadly, we show that the Majorana
quantization procedure is generic to superconductors, with or without the Dirac
structure, and follows from the constraints of fermionic statistics on the
symmetries of Bogoliubov-de Gennes Hamiltonians. The Hamiltonian can always be
brought to an imaginary form, leading to equations of motion that are real with
quantized real field solutions. Also we examine the Fock space realization of
the zero mode algebra for the Dirac-type systems. We show that a
two-dimensional representation is natural, in which fermion parity is
preserved.Comment: 26 pages, no figure
Anomalous thermoelectric effects of ZrTe in and beyond the quantum limit
Thermoelectric effects are more sensitive and promising probes to topological
properties of emergent materials, but much less addressed compared to other
physical properties. Zirconium pentatelluride (ZrTe) has inspired active
investigations recently because of its multiple topological nature. We study
the thermoelectric effects of ZrTe in a magnetic field and find several
anomalous behaviors. The Nernst response has a steplike profile near zero field
when the charge carriers are electrons only, suggesting the anomalous Nernst
effect arising from a nontrivial profile of Berry curvature. Both the
thermopower and Nernst signal exhibit exotic peaks in the strong-field quantum
limit. At higher magnetic fields, the Nernst signal has a sign reversal at a
critical field where the thermopower approaches to zero. We propose that these
anomalous behaviors can be attributed to the Landau index inversion, which is
resulted from the competition of the dependence of the Dirac-type
Landau bands and linear- dependence of the Zeeman energy ( is the
magnetic field). Our understanding to the anomalous thermoelectric properties
in ZrTe opens a new avenue for exploring Dirac physics in topological
materials.Comment: 6 pages, 4 figure
Providing appropriate social support to prevention of depression for high-anxious sufferers
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordNational Natural Science Foundation of ChinaFundamental Research Funds for the Central Universities, ChinaChina Postdoctoral Science FoundationFund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Provinc
- …