305 research outputs found

    The molecular cloning and characterization of potential chick DM-GRASP homologs in zebrafish and mouse

    Full text link
    A full-length zebrafish cDNA clone and a partial mouse cDNA clone similar to chick DM-GRASP were isolated and analyzed. The nucleotide sequence of the full-length zebrafish clone shares 54% identity, and predicts 39% amino acid identity, with chick DM-GRASP. The partial mouse clone shares 76% nucleotide identity, and predicts 76% amino acid identity, with chick DM-GRASP. The predicted proteins encoded by both of these clones exhibit conserved structural domains that are characteristic of the chick protein. These features may identify them as a distinct subfamily within the immunoglobulin superfamily of cell adhesion molecules. Express of the zebrafish DM-GRASP protein is similar to chick DM-GRASP and is principally restricted to a small subset of developing sensory and motor neurons during axonogenesis. Zebrafish DM-GRASP expression was temporally regulated and limited to specific axon domains. This regional expression correlated with fasciculated axon domains. These results suggest that the zebrafish and mouse cDNA clones represent the respective fish and mammalian homologs of thick DM-GRASP. The highly selective expression of zebrafish DM-GRASP suggests that it is involved in the selective fasciculation and guidance of axons along their normal pathways. 1994 John Wiley & Sons, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50085/1/480250708_ftp.pd

    Outgrowth by fin motor axons in wildtype and a finless mutant of the Japanese medaka fish

    Full text link
    The outgrowth of motor axons to the developing pectoral fin of the Japanese medaka fish (Oryzias latipes) was investigated both in wildtype embryos and in the pectoral finless (pl) mutants in which adults are missing pectoral fins. Late in embryogenesis the pectoral fin is a simple limb which contains two antagonist muscles which are innervated by presumptive motor neurons from the first four spinal segments (S1-4). The pectoral fin develops from a fin bud located in S1 and S2 centered on the border between S1 and S2 and, as with other limbs, one of the earliest signs of differentiation is the apical ectodermal ridge (AER). By the time the AER is well formed the growth cones of the presumptive motor neurons have reached the base of the fin bud and formed a plexus by extending toward the fin bud upon emergence from the spinal cord. This is especially evident on the ventral surface of the metamerically arranged axial muscles. For example, growth cones from S2 extend in a diagonal direction (both anterior and lateral) towards the fin bud. One hypothesis which can account for the pattern of motor outgrowth is that growth cones are attracted to the base of the fin bud, perhaps via a long distance cue. This hypothesis was tested by examining outgrowth of segmental nerves in pl embryos in which the fin buds arrest early in development following the initial appearance of the AER. In pl, nerves from S1-4 converged to form a plexus at the base of the abnormal fin bud, but the pattern of outgrowth varied from wildtype in a way consistent with a diminished capacity of the fin bud to attract segmental nerves to it.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29235/1/0000290.pd

    Transport of the alpha subunit of the voltage gated Lâ type calcium channel through the sarcoplasmic reticulum occurs prior to localization to triads and requires the beta subunit but not Stac3 in skeletal muscles

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138228/1/tra12502-sup-0001-EditorialProcess.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138228/2/tra12502.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138228/3/tra12502_am.pd

    Identification of spinal neurons in the embryonic and larval zebrafish

    Full text link
    Previous studies indicated that the developing fish spinal cord was a simple system containing a small number of distinguishable neuronal cell types (Eisen et al., Nature 320 :269–271, '86; Kuwada, Science, 233 :740–746, '86). To verify this we have characterized the cellular anatomy of the spinal cord of developing zebrafish in order to determine the number, identities, and organization of the spinal neurons. Spinal neurons were labeled by intracellular dye injections, application of an axonal tracer dye to all or subsets of the axonal tracts, and application of antibodies which recognize embryonic neurons. We found that nine classes of neurons could be identified based on soma size and position, pattern of dendrites, axonal trajectory, and time of axonogenesis. These are two classes of axial motor neurons, which have been previously characterized (Myers, J. Comp. Neurol. 236 :555–561, '85), one class of sensory neurons, and six classes of interneurons. One of the interneuron classes could be subclassified as primary and secondary based on criteria similar to those used to classify the axial motor neurons into primary and secondary classes. The early cord (18–20 hours) is an extremely simple system and contains approximately 18 lateral cell bodies per hemisegment, which presumably are post-mitotic cells. By this stage, five of the neuronal classes have begun axonogenesis including the primary motor neurons, sensory neurons, and three classes of interneurons. By concentrating on these early stages when the cord is at its simplest, pathfinding by growth cones of known identities can be described in detail. Then it should be possible to test many different mechanisms which may guide growth cones in the vertebrate central nervous system (CNS).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50048/1/903020315_ftp.pd

    Alteration of pectoral fin nerves following ablation of fin buds and by ectopic fin buds in the Japanese medaka fish

    Full text link
    The role of the pectoral fin bud for outgrowth by fin axons was assessed by ablation of pectoral fin buds and by transplantation of fin buds to ectopic sites in the embryos of the Japanese medaka fish (Oryzias latipes). Normally nerves from segments 1-4 (S1-4) and less frequently the S5 nerve converged at the base of the fin bud by extending toward the fin bud on the ventral surface of the axial muscles (H. Okamoto and J. Y. Kuwada, 1991, Dev. Biol. 146). Following ablation of the fin bud before motor growth cones have begun to extend laterally, nerves in S1-5 followed a trajectory down the middle of each segment parallel to the borders of the metamerically arranged axial muscles rather than converging. This trajectory was similar to that of more posterior segmental nerves which do not converge toward the fin bud. When fin buds were transplanted to more posterior segments, nerves from S1-5 often changed their trajectories and extended to the base of ectopic buds. Furthermore, motor nerves from segments posterior to S5, which normally do not innervate the fin bud, also extended to the ectopic fin bud. When faced with both the host and ectopic fin bud, motor nerves extended to either fin bud or branched and extended to both fin buds. These results demonstrate that the early fin bud is necessary for correct outgrowth of fin nerves and suggest that the fin bud normally attracts fin nerves to its base. One possible mechanism for the attraction of motor growth cones by the fin bud is a long distance cue emitted by the fin bud.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29237/1/0000292.pd

    Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    Get PDF
    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch-once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch-once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs

    Improvement in the performance of the X-ray source based on parametric X-ray radiation using a wedge-shaped target crystal

    Get PDF
    The properties of parametric X-ray radiation (PXR) emitted from a wedge-shaped Si(111) crystal plate were experimentally investigated using the PXR generator at the Laboratory for Electron Beam Research and Application (LEBRA) of Nihon University. The wedge surface was imposed on a symmetric-cut Si(111) plate and has an asymmetric cut-surface with respect to the (111) crystal planes. As a result of the experiment, it was found that the PXR intensity improved can be obtained suppressing the degradation of the X-ray performance using a wedgeshaped target. With this improvement, phase-contrast images without absorption contrast could be obtained from DEI images taken with the exposure of severalten seconds. The reduction of the exposure time made it possible to carry out a computed tomography (CT) experiment by DEI within a practical machine time, and phase-contrast tomograms of a biological sample were obtained at the PXR energy of 17.5 keV

    Growth cone guidance by floor plate cells in the spinal cord of zebrafish embryos

    Full text link
    The spinal cord of early zebrafish embryos contains a small number of neuronal classes whose growth cones all follow stereotyped, cell-specific pathways to their targets. Two classes of spinal neurons make cell-specific turns at or near the ventral midline of the spinal cord, which is occupied by a single row of midline floor plate cells. We tested whether these cells guide the growth cones by examining embryos missing the midline floor plate cells due either to laser ablation of the cells or to a mutation (cyc-1). In these embryos the growth cones followed both normal and aberrant pathways once near the ventral midline. This suggests that normally the midline floor plate cells do provide guidance cues, but that these cues are not obligatory.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30091/1/0000463.pd

    Failure of Mesenteric Defect Closure After Roux-en-Y Gastric Bypass

    Get PDF
    Routine closure of mesenteric defects after Roux-en-Y gastric bypass may not be an effective permanent closure

    Na V 1.6a is required for normal activation of motor circuits normally excited by tactile stimulation

    Full text link
    A screen for zebrafish motor mutants identified two noncomplementing alleles of a recessive mutation that were named non-active ( nav mi89 and nav mi130 ). nav embryos displayed diminished spontaneous and touch-evoked escape behaviors during the first 3 days of development. Genetic mapping identified the gene encoding Na V 1.6a ( scn8aa ) as a potential candidate for nav . Subsequent cloning of scn8aa from the two alleles of nav uncovered two missense mutations in Na V 1.6a that eliminated channel activity when assayed heterologously. Furthermore, the injection of RNA encoding wild-type scn8aa rescued the nav mutant phenotype indicating that scn8aa was the causative gene of nav . In-vivo electrophysiological analysis of the touch-evoked escape circuit indicated that voltage-dependent inward current was decreased in mechanosensory neurons in mutants, but they were able to fire action potentials. Furthermore, tactile stimulation of mutants activated some neurons downstream of mechanosensory neurons but failed to activate the swim locomotor circuit in accord with the behavioral response of initial escape contractions but no swimming. Thus, mutant mechanosensory neurons appeared to respond to tactile stimulation but failed to initiate swimming. Interestingly fictive swimming could be initiated pharmacologically suggesting that a swim circuit was present in mutants. These results suggested that Na V 1.6a was required for touch-induced activation of the swim locomotor network. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70:508–522, 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75774/1/20791_ftp.pd
    corecore