236 research outputs found

    Revealing the deposition of macrophytes transported offshore: Evidence of their long-distance dispersal and seasonal aggregation to the deep sea

    Get PDF
    The role of coastal macrophyte beds as a carbon sink is under debate. Various studies have provided global estimates of the carbon sequestration and stocks of macrophyte beds; however, the final fate of macrophyte debris exported from coastal beds remains uncertain, and must be determined in order to fully clarify the role of coastal vegetation as a carbon sink. Here we conducted bottom-trawl surveys to investigate the extensive and seasonal aggregation of exported macrophytes on the continental shelf and slope seafloor (40-1,800 m). Sunken macrophytes showed a clear seasonal trend with highest biomasses in summer. This was mainly caused by the most collected macrophyte species Sargassum horneri. Furthermore, we used numerical simulations to verify the link between sea-surface hydrographic condition and seafloor distribution of sunken macrophytes. Our results showed that S. horneri accumulated beneath the Kuroshio Extension current, which is the western boundary current of the North Pacific subtropical gyre. Overall, floating macrophytes that became transported offshore by a stable sea-surface current, such as the western boundary current, constitute an organic carbon pathway from coastal waters to the deep sea. Our findings suggest that these buoyant macrophytes can act as a biological pump to enhance oceanic carbon sequestration

    Plasma Membrane Ca 2+-ATPase in Rat and Human Odontoblasts Mediates Dentin Mineralization

    Get PDF
    Intracellular Ca(2+) signaling engendered by Ca(2+) influx and mobilization in odontoblasts is critical for dentinogenesis induced by multiple stimuli at the dentin surface. Increased Ca(2+) is exported by the Na(+)–Ca(2+) exchanger (NCX) and plasma membrane Ca(2+)–ATPase (PMCA) to maintain Ca(2+) homeostasis. We previously demonstrated a functional coupling between Ca(2+) extrusion by NCX and its influx through transient receptor potential channels in odontoblasts. Although the presence of PMCA in odontoblasts has been previously described, steady-state levels of mRNA-encoding PMCA subtypes, pharmacological properties, and other cellular functions remain unclear. Thus, we investigated PMCA mRNA levels and their contribution to mineralization under physiological conditions. We also examined the role of PMCA in the Ca(2+) extrusion pathway during hypotonic and alkaline stimulation-induced increases in intracellular free Ca(2+) concentration ([Ca(2+)](i)). We performed RT-PCR and mineralization assays in human odontoblasts. [Ca(2+)](i) was measured using fura-2 fluorescence measurements in odontoblasts isolated from newborn Wistar rat incisor teeth and human odontoblasts. We detected mRNA encoding PMCA1–4 in human odontoblasts. The application of hypotonic or alkaline solutions transiently increased [Ca(2+)](i) in odontoblasts in both rat and human odontoblasts. The Ca(2+) extrusion efficiency during the hypotonic or alkaline solution-induced [Ca(2+)](i) increase was decreased by PMCA inhibitors in both cell types. Alizarin red and von Kossa staining showed that PMCA inhibition suppressed mineralization. In addition, alkaline stimulation (not hypotonic stimulation) to human odontoblasts upregulated the mRNA levels of dentin matrix protein-1 (DMP-1) and dentin sialophosphoprotein (DSPP). The PMCA inhibitor did not affect DMP-1 or DSPP mRNA levels at pH 7.4–8.8 and under isotonic and hypotonic conditions, respectively. We also observed PMCA1 immunoreactivity using immunofluorescence analysis. These findings indicate that PMCA participates in maintaining [Ca(2+)](i) homeostasis in odontoblasts by Ca(2+) extrusion following [Ca(2+)](i) elevation. In addition, PMCA participates in dentinogenesis by transporting Ca(2+) to the mineralizing front (which is independent of non-collagenous dentin matrix protein secretion) under physiological and pathological conditions following mechanical stimulation by hydrodynamic force inside dentinal tubules, or direct alkaline stimulation by the application of high-pH dental materials

    Bacterial artificial chromosomes as analytical basis for gene transcriptional machineries

    Get PDF
    Bacterial Artificial Chromosomes (BACs) had been minimal components of various genome-sequencing projects, constituting perfect analytical basis for functional genomics. Here we describe an enhancer screening strategy in which BAC clones that cover any genomic segments of interest are modified to harbor a reporter cassette by transposon tagging, then processed to carry selected combinations of gene regulatory modules by homologous recombination mediated systematic deletions. Such engineered BAC-reporter constructs in bacterial cells are ready for efficient transgenesis in mice to evaluate activities of gene regulatory modules intact or absent in the constructs. By utilizing the strategy, we could speedily identify a critical genomic fragment for spatio-temporally regulated expression of a mouse cadherin gene whose structure is extraordinarily huge and intricate. This BAC-based methodology would hence provide a novel screening platform for gene transcriptional machineries that dynamically fluctuate during development, pathogenesis and/or evolution

    Vandetanib (ZD6474), an inhibitor of VEGFR and EGFR signalling, as a novel molecular-targeted therapy against cholangiocarcinoma

    Get PDF
    Cholangiocarcinoma is an intractable cancer, with no effective therapy other than surgical resection. Elevated vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) expressions are associated with the progression of cholangiocarcinoma. We therefore examined whether inhibition of VEGFR and EGFR could be a potential therapeutic target for cholangiocarcinoma. Vandetanib (ZD6474, ZACTIMA), a VEGFR-2/EGFR inhibitor, was evaluated. Four human cholangiocarcinoma cell lines were molecularly characterised and investigated for their response to vandetanib. In vitro, two cell lines (OZ and HuCCT1), both of which harboured KRAS mutation, were refractory to vandetanib, one cell line (TGBC24TKB) was somewhat resistant, and another cell line (TKKK) was sensitive. The most sensitive cell line (TKKK) had EGFR amplification. Vandetanib significantly inhibited the growth of TKKK xenografts at doses ⩾12.5 mg kg−1 day−1 (P<0.05), but higher doses (50 mg kg−1 day−1, P<0.05) of vandetanib were required to inhibit the growth of OZ xenografts. Vandetanib (25 mg kg−1 day−1) also significantly (P=0.006) prolonged the time to metastasis in an intravenous model of TKKK metastasis. Inhibiting both VEGFR and EGFR signalling appears a promising therapeutic approach for cholangiocarcinoma. The absence of KRAS mutation and the presence of EGFR amplification may be potential predictive molecular marker of sensitivity to EGFR-targeted therapy in cholangiocarcinoma

    Novel echocardiographic techniques to assess left atrial size, anatomy and function

    Get PDF
    Three-dimensional echocardiography (3DE) and speckle tracking echocardiography (STE) have recently applied as imaging techniques to accurately evaluate left atrial (LA) size, anatomy and function. 3DE and off-line quantification softwares, have allowed, in comparison to magnetic resonance imaging, the most time-efficient and accurate method of LA volume quantification. STE provides a non-Doppler, angle-independent and objective quantification of LA myocardial deformation. Data regarding feasibility, accuracy and clinical applications of LA analysis by 3DE and STE are rapidly gathering. This review describes the fundamental concepts of LA 3DE and STE, illustrates how to obtain respective measurements and discuss their recognized and emerging clinical applications

    Serotonin Antagonism Improves Platelet Inhibition in Clopidogrel Low-Responders after Coronary Stent Placement: An In Vitro Pilot Study

    Get PDF
    Increased residual platelet reactivity remains a burden for coronary artery disease (CAD) patients who received a coronary stent and do not respond sufficiently to treatment with acetylsalicylic acid and clopidogrel. We hypothesized that serotonin antagonism reduces high on-treatment platelet reactivity. Whole blood impedance aggregometry was performed with arachidonic acid (AA, 0.5 mM) and adenosine diphosphate (ADP, 6.5 µM) in addition to different concentrations of serotonin (1–100 µM) in whole blood from 42 CAD patients after coronary stent placement and 10 healthy subjects. Serotonin increased aggregation dose-dependently in CAD patients who responded to clopidogrel treatment: After activation with ADP, aggregation increased from 33.7±1.3% to 40.9±2.0% in the presence of 50 µM serotonin (p<0.05) and to 48.2±2.0% with 100 µM serotonin (p<0.001). The platelet serotonin receptor antagonist ketanserin decreased ADP-induced aggregation significantly in clopidogrel low-responders (from 59.9±3.1% to 37.4±3.5, p<0.01), but not in clopidogrel responders. These results were confirmed with light transmission aggregometry in platelet-rich plasma in a subset of patients. Serotonin hence increased residual platelet reactivity in patients who respond to clopidogrel after coronary stent placement. In clopidogrel low-responders, serotonin receptor antagonism improved platelet inhibition, almost reaching responder levels. This may justify further investigation of triple antiplatelet therapy with anti-serotonergic agents
    corecore