131 research outputs found

    First-order phase transition in the tethered surface model on a sphere

    Full text link
    We show that the tethered surface model of Helfrich and Polyakov-Kleinert undergoes a first-order phase transition separating the smooth phase from the crumpled one. The model is investigated by the canonical Monte Carlo simulations on spherical and fixed connectivity surfaces of size up to N=15212. The first-order transition is observed when N>7000, which is larger than those in previous numerical studies, and a continuous transition can also be observed on small-sized surfaces. Our results are, therefore, consistent with those obtained in previous studies on the phase structure of the model.Comment: 6 pages with 7 figure

    Phase transitions of a tethered surface model with a deficit angle term

    Full text link
    Nambu-Goto model is investigated by using the canonical Monte Carlo simulations on fixed connectivity surfaces of spherical topology. Three distinct phases are found: crumpled, tubular, and smooth. The crumpled and the tubular phases are smoothly connected, and the tubular and the smooth phases are connected by a discontinuous transition. The surface in the tubular phase forms an oblong and one-dimensional object similar to a one-dimensional linear subspace in the Euclidean three-dimensional space R^3. This indicates that the rotational symmetry inherent in the model is spontaneously broken in the tubular phase, and it is restored in the smooth and the crumpled phases.Comment: 6 pages with 6 figure

    Phase transition of meshwork models for spherical membranes

    Full text link
    We have studied two types of meshwork models by using the canonical Monte Carlo simulation technique. The first meshwork model has elastic junctions, which are composed of vertices, bonds, and triangles, while the second model has rigid junctions, which are hexagonal (or pentagonal) rigid plates. Two-dimensional elasticity is assumed only at the elastic junctions in the first model, and no two-dimensional bending elasticity is assumed in the second model. Both of the meshworks are of spherical topology. We find that both models undergo a first-order collapsing transition between the smooth spherical phase and the collapsed phase. The Hausdorff dimension of the smooth phase is H\simeq 2 in both models as expected. It is also found that H\simeq 2 in the collapsed phase of the second model, and that H is relatively larger than 2 in the collapsed phase of the first model, but it remains in the physical bound, i.e., H<3. Moreover, the first model undergoes a discontinuous surface fluctuation transition at the same transition point as that of the collapsing transition, while the second model undergoes a continuous transition of surface fluctuation. This indicates that the phase structure of the meshwork model is weakly dependent on the elasticity at the junctions.Comment: 21 pages, 12 figure

    Phase transition of triangulated spherical surfaces with elastic skeletons

    Full text link
    A first-order transition is numerically found in a spherical surface model with skeletons, which are linked to each other at junctions. The shape of the triangulated surfaces is maintained by skeletons, which have a one-dimensional bending elasticity characterized by the bending rigidity bb, and the surfaces have no two-dimensional bending elasticity except at the junctions. The surfaces swell and become spherical at large bb and collapse and crumple at small bb. These two phases are separated from each other by the first-order transition. Although both of the surfaces and the skeleton are allowed to self-intersect and, hence, phantom, our results indicate a possible phase transition in biological or artificial membranes whose shape is maintained by cytoskeletons.Comment: 15 pages with 10 figure

    Spherical surface models with directors

    Full text link
    A triangulated spherical surface model is numerically studied, and it is shown that the model undergoes phase transitions between the smooth phase and the collapsed phase. The model is defined by using a director field, which is assumed to have an interaction with a normal of the surface. The interaction between the directors and the surface maintains the surface shape. The director field is not defined within the two-dimensional differential geometry, and this is in sharp contrast to the conventional surface models, where the surface shape is maintained only by the curvature energies. We also show that the interaction makes the Nambu-Goto model well-defined, where the bond potential is given by the area of triangles; the Nambu-Goto model is well-known as an ill-defined one even when the conventional two-dimensional bending energy is included in the Hamiltonian.Comment: 18 pages, 13 figure

    Phase transitions of an intrinsic curvature model on dynamically triangulated spherical surfaces with point boundaries

    Full text link
    An intrinsic curvature model is investigated using the canonical Monte Carlo simulations on dynamically triangulated spherical surfaces of size upto N=4842 with two fixed-vertices separated by the distance 2L. We found a first-order transition at finite curvature coefficient \alpha, and moreover that the order of the transition remains unchanged even when L is enlarged such that the surfaces become sufficiently oblong. This is in sharp contrast to the known results of the same model on tethered surfaces, where the transition weakens to a second-order one as L is increased. The phase transition of the model in this paper separates the smooth phase from the crumpled phase. The surfaces become string-like between two point-boundaries in the crumpled phase. On the contrary, we can see a spherical lump on the oblong surfaces in the smooth phase. The string tension was calculated and was found to have a jump at the transition point. The value of \sigma is independent of L in the smooth phase, while it increases with increasing L in the crumpled phase. This behavior of \sigma is consistent with the observed scaling relation \sigma \sim (2L/N)^\nu, where \nu\simeq 0 in the smooth phase, and \nu=0.93\pm 0.14 in the crumpled phase. We should note that a possibility of a continuous transition is not completely eliminated.Comment: 15 pages with 10 figure

    Finsler geometry modeling of reverse piezoelectric effect in PVDF

    Get PDF
    We apply the Finsler geometry (FG) modeling technique to study the electric field-induced strain in ferroelectric polymers. Polyvinylidene difluoride (PVDF) has a negative longitudinal piezoelectric coefficient, which is unusual in ferroelectrics, and therefore the shape changes in this material are hard to predict. We find that the results of Monte Carlo simulations for the FG model are in good agreement with experimental strain-electric field curves of PVDF-based polymers in both longitudinal and transverse directions. This implies that FG modeling is suitable for reproducing the reverse piezoelectric effect in PVDF

    Bacterial contamination of inanimate surfaces and equipment in the intensive care unit

    Get PDF
    Intensive care unit (ICU)-acquired infections are a challenging health problem worldwide, especially when caused by multidrug-resistant (MDR) pathogens. In ICUs, inanimate surfaces and equipment (e.g., bedrails, stethoscopes, medical charts, ultrasound machine) may be contaminated by bacteria, including MDR isolates. Cross-transmission of microorganisms from inanimate surfaces may have a significant role for ICU-acquired colonization and infections. Contamination may result from healthcare workers' hands or by direct patient shedding of bacteria which are able to survive up to several months on dry surfaces. A higher environmental contamination has been reported around infected patients than around patients who are only colonized and, in this last group, a correlation has been observed between frequency of environmental contamination and culture-positive body sites. Healthcare workers not only contaminate their hands after direct patient contact but also after touching inanimate surfaces and equipment in the patient zone (the patient and his/her immediate surroundings). Inadequate hand hygiene before and after entering a patient zone may result in cross-transmission of pathogens and patient colonization or infection. A number of equipment items and commonly used objects in ICU carry bacteria which, in most cases, show the same antibiotic susceptibility profiles of those isolated from patients. The aim of this review is to provide an updated evidence about contamination of inanimate surfaces and equipment in ICU in light of the concept of patient zone and the possible implications for bacterial pathogen cross-transmission to critically ill patients
    • …
    corecore