637 research outputs found

    Multichannel cold collisions between metastable Sr atoms

    Full text link
    We present a multichannel scattering calculation of elastic and inelastic cold collisions between two low-field seeking, metastable ^{88}Sr [(5s5p) ^3P_2] atoms in the presence of an external magnetic field. The scattering physics is governed by strong anisotropic long-range interactions, which lead to pronounced coupling among the partial waves of relative motion. As a result, nonadiabatic transitions are shown to trigger a high rate of inelastic losses. At relatively high energies, T > 100 mkK, the total inelastic collision rate is comparable with the elastic rate. However, at lower collisional energy, the elastic rate decreases, and at T ~ 1mkK, it becomes substantially smaller than the inelastic rate. Our study suggests that magnetic trapping and evaporative cooling of ^{88}Sr [(5s5p) ^3P_2] atoms, as well as ^{40}Ca [(4s4p) ^3P_2], in low-field seeking states will prove difficult to achieve experimentally.Comment: 4 pages, Latex, Submitte

    Inhibition of neutrophil migration by a selective inhibitor of matrix metalloproteinase: analysis by intravital microscopy

    Get PDF
    Observation of the microcirculation of the hamster cheek pouch by intravital microscopy revealed five steps of neutrophil migration from the venules after topical application of leukotriene B4 to the microvasculature: rolling along the venular wall (Step 1), adhesion to it (Step 2), disappearance from the vascular lumen (Step 3), presence between the endothelial cells and the subendothelial basement membrane (Step 4) and passage through the basement membrane (Step 5). The present study was performed to examine whether a metalloproteinase inhibitor inhibits neutrophil migration at any of the above five steps. Chymostatin and leupeptin did not inhibit any of these five steps. In contrast, FN-439, a selective inhibitor of matrix metalloproteinase, reduced the number of neutrophils in the perivascular space without affecting Steps 1 to 3. It was concluded that neutrophils may use metalloproteinase (collagenase/gelatinase) to penetrate the subendothelial basement membrane

    Optical clocks based on ultra-narrow three-photon resonances in alkaline earth atoms

    Full text link
    A sharp resonance line that appears in three-photon transitions between the 1S0^{1}S_{0} and 3P0^{3}P_{0} states of alkaline earth and Yb atoms is proposed as an optical frequency standard. This proposal permits the use of the even isotopes, in which the clock transition is narrower than in proposed clocks using the odd isotopes and the energy interval is not affected by external magnetic fields or the polarization of trapping light. The method has the unique feature that the width and rate of the clock transition can be continuously adjusted from the MHzMHz level to sub-mHzmHz without loss of signal amplitude by varying the intensities of the three optical beams. Doppler and recoil effects can be eliminated by proper alignment of the three optical beams or by point confinement in a lattice trap. The three beams can be mixed to produce the optical frequency corresponding to the 3P0^{3}P_{0} - 1S0^{1}S_{0} clock interval.Comment: 10 pages, 4 figures, submitted to PR

    Narrow Line Cooling and Momentum-Space Crystals

    Full text link
    Narrow line laser cooling is advancing the frontier for experiments ranging from studies of fundamental atomic physics to high precision optical frequency standards. In this paper, we present an extensive description of the systems and techniques necessary to realize 689 nm 1S0 - 3P1 narrow line cooling of atomic 88Sr. Narrow line cooling and trapping dynamics are also studied in detail. By controlling the relative size of the power broadened transition linewidth and the single-photon recoil frequency shift, we show that it is possible to continuously bridge the gap between semiclassical and quantum mechanical cooling. Novel semiclassical cooling process, some of which are intimately linked to gravity, are also explored. Moreover, for laser frequencies tuned above the atomic resonance, we demonstrate momentum-space crystals containing up to 26 well defined lattice points. Gravitationally assisted cooling is also achieved with blue-detuned light. Theoretically, we find the blue detuned dynamics are universal to Doppler limited systems. This paper offers the most comprehensive study of narrow line laser cooling to date.Comment: 14 pages, 19 figure

    State-insensitive trapping of Rb atoms: linearly versus circularly polarized lights

    Full text link
    We study the cancellation of differential ac Stark shifts in the 5s and 5p states of rubidium atom using the linearly and circularly polarized lights by calculating their dynamic polarizabilities. Matrix elements were calculated using a relativistic coupled-cluster method at the single, double and important valence triple excitations approximation including all possible non-linear correlation terms. Some of the important matrix elements were further optimized using the experimental results available for the lifetimes and static polarizabilities of atomic states. "Magic wavelengths" are determined from the differential Stark shifts and results for the linearly polarized light are compared with the previously available results. Possible scope of facilitating state-insensitive optical trapping schemes using the magic wavelengths for circularly polarized light are discussed. Using the optimized matrix elements, the lifetimes of the 4d and 6s states of this atom are ameliorated.Comment: 13 pages, 13 tables and 4 figure

    Decay Properties of 266^{266}Bh and 262^{262}Db Produced in the 248^{248}Cm + 23^{23}Na Reaction

    Full text link
    Decay properties of an isotope 266^{266}Bh and its daughter nucleus 262^{262}Db produced by the 248^{248}Cm(23^{23}Na, 5\textit{n}) reaction were studied by using a gas-filled recoil separator coupled with a position-sensitive semiconductor detector. 266^{266}Bh was clearly identified from the correlation of the known nuclide, 262^{262}Db. The obtained decay properties of 266^{266}Bh and 262^{262}Db are consistent with those observed in the 278^{278}113 chain, which provided further confirmation of the discovery of 278^{278}113.Comment: Accepted for publication in J. Phys. Soc. JPN., to be published in Vol.78 No.

    Magnetic trapping of metastable 3P2^3P_2 atomic strontium

    Get PDF
    We report the magnetic trapping of metastable 3P2^3P_2 atomic strontium. Atoms are cooled in a magneto-optical trap (MOT) operating on the dipole allowed 1S0−1P1^1S_0-^1P_1 transition at 461 nm. Decay via 1P1→1D2→3P2^1P_1\to {^1D_2}\to {^3P_2} continuously loads a magnetic trap formed by the quadrupole magnetic field of the MOT. Over 10810^8 atoms at a density of 8×1098 \times 10^9 cm−3^{-3} and temperature of 1 mK are trapped. The atom temperature is significantly lower than what would be expected from the kinetic and potential energy of atoms as they are transferred from the MOT. This suggests that thermalization and evaporative cooling are occurring in the magnetic trap.Comment: This paper has been accepted by PR
    • …
    corecore