7,307 research outputs found

    Deprojection technique for galaxy cluster considering point spread function

    Full text link
    We present a new method for the analysis of Abell 1835 observed by XMM-Newton. The method is a combination of the Direct Demodulation technique and deprojection. We eliminate the effects of the point spread function (PSF) with the Direct Demodulation technique. We then use a traditional depro-jection technique to study the properties of Abell 1835. Compared to that of deprojection method only, the central electron density derived from this method increases by 30%, while the temperature profile is similar.Comment: accepted for publication in Sciences in China -- G, the Black Hole special issu

    Entanglement for a Bimodal Cavity Field Interacting with a Two-Level Atom

    Full text link
    Negativity has been adopted to investigate the entanglement in a system composed of a two-level atom and a two-mode cavity field. Effects of Kerr-like medium and the number of photon inside the cavity on the entanglement are studied. Our results show that atomic initial state must be superposed, so that the two cavity field modes can be entangled. Moreover, we also conclude that the number of photon in the two cavity mode should be equal. The interaction between modes, namely, the Kerr effect, has a significant negative contribution. Note that the atom frequency and the cavity frequency have an indistinguishable effect, so a corresponding approximation has been made in this article. These results may be useful for quantum information in optics systems.Comment: Accepted by Commun. Theor. Phy

    Beyond context: Exploring semantic similarity for small object detection in crowded scenes

    Full text link
    © 2019 Small object detection in crowded scene aims to find those tiny targets with very limited resolution from crowded scenes. Due to very little information available on tiny objects, it is often not suitable to detect them merely based on the information presented inside their bounding boxes, resulting low accuracy. In this paper, we propose to exploit the semantic similarity among all predicted objects’ candidates to boost the performance of detectors when handling tiny objects. For this purpose, we construct a pairwise constraint to depict such semantic similarity and propose a new framework based on Discriminative Learning and Graph-Cut techniques. Experiments conducted on three widely used benchmark datasets demonstrate the improvement over the state-of-the-art approaches gained by applying this idea

    Tree amplitudes of noncommutative U(N) Yang-Mills Theory

    Full text link
    Following the spirit of S-matrix program, we proposed a modified Britto-Cachazo-Feng-Witten recursion relation for tree amplitudes of noncommutative U(N) Yang-Mills theory. Starting from three-point amplitudes, one can use this modified BCFW recursion relation to compute or analyze color-ordered tree amplitudes without relying on any detail information of noncommutative Yang-Mills theory. After clarifying the color structure of noncommutative tree amplitudes, we wrote down the noncommutative analogies of U(1)-decoupling, Kleiss-Kuijf and Bern-Carrasco-Johansson relations for color-ordered tree amplitudes, and proved them using the modified BCFW recursion relation.Comment: 24 pages, 3 figures. v2 References added. v3 some typos correcte

    Quantum size effects on the perpendicular upper critical field in ultra-thin lead films

    Full text link
    We report the thickness-dependent (in terms of atomic layers) oscillation behavior of the perpendicular upper critical field Hc2⊥H_{c2\perp} in the ultra-thin lead films at the reduced temperature (t=T/Tct=T/T_c). Distinct oscillations of the normal-state resistivity as a function of film thickness have also been observed. Compared with the TcT_c oscillation, the Hc2⊥H_{c2\perp} shows a considerable large oscillation amplitude and a π\pi phase shift. The oscillatory mean free path caused by quantum size effect plays a role in Hc2⊥H_{c2\perp} oscillation.Comment: 4 pages, 4 figure

    Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media.

    Get PDF
    Hydrogen evolution reaction is an important process in electrochemical energy technologies. Herein, ruthenium and nitrogen codoped carbon nanowires are prepared as effective hydrogen evolution catalysts. The catalytic performance is markedly better than that of commercial platinum catalyst, with an overpotential of only -12 mV to reach the current density of 10 mV cm-2 in 1 M KOH and -47 mV in 0.1 M KOH. Comparisons with control experiments suggest that the remarkable activity is mainly ascribed to individual ruthenium atoms embedded within the carbon matrix, with minimal contributions from ruthenium nanoparticles. Consistent results are obtained in first-principles calculations, where RuCxNy moieties are found to show a much lower hydrogen binding energy than ruthenium nanoparticles, and a lower kinetic barrier for water dissociation than platinum. Among these, RuC2N2 stands out as the most active catalytic center, where both ruthenium and adjacent carbon atoms are the possible active sites
    • …
    corecore