468 research outputs found
Structure of liquid Sn over a wide temperature range from neutron scattering experiments and first-principles MD simulation: A comparison to liquid Pb
éę²¢å¤§å¦ēå¦éØThe structure of liquid Sn was studied by neutron scattering experiments in the widest temperature range that was ever performed. Though, on increasing temperature, the existence of the shoulder in the structure factor, S(Q), becomes less clear in the change of the overall shape of the S(Q), the structure related to this shoulder seems to be present even at 1873 K. The first-principle molecular-dynamics ~FPMD! simulation was performed for the first time for liquid Sn by using the cell size of 64 particles. The calculated results well reproduced S(Q) obtained by the neutron experiments. The angle distribution, g(3)(u ,rc), was evaluated for the angle between vectors from centered atom to other two atoms in spheres of cutoff radii rcās. The g(3)(u ,rc) shows that, with the decrease of rc from 0.4 to 0.3 nm, a rather sharp peak around 60 Ā° disappears and only a broad peak around 100 Ā° remains; the former peak may be derived from the feature of the closely packed structures and the latter one is close to the tetrahedral angle of 109 Ā°. In addition, the coordination number, n, of liquid Sn counted within the sphere of rc50.3 nm is found to be 2ā3 and does not change with the increase of temperature even up to 1873 K. These facts indicate that at least the fragment of the tetrahedral unit may be essentially kept even at 1873 K for liquid Sn. For comparison, the FPMD simulation was performed for the first time also for liquid Pb. No sign of the existence of the tetrahedral structure was observed for liquid Pb. Unfortunately, the self-diffusion coefficients, Dās, obtained from this FPMD for liquid Sn do not agree with those obtained by the microgravity experiments though the structure factors, S(Q)ās, are well reproduced. To remove the limitation of the small cell size of the FPMD, the classical molecular-dynamics simulations with a cell size of 2197 particles were performed by incorporating the present experimental structural information of liquid Sn. Obtained Dās are in good agreement with the microgravity data
Microarray analysis of circulating microRNAs in familial Mediterranean fever
Objectives: Familial Mediterranean fever (FMF) is an autoinflammatory disease caused by mutations in MEFV. Mutations in exon 10 are associated with typical FMF phenotypes, whereas the pathogenic role of variants in exons 2 and 3 remains uncertain. Recent evidence suggests that circulating microRNAs (miRNAs) are potentially useful biomarkers in several diseases. Therefore, their expression was assessed in FMF. Methods: The subjects were 24 patients with FMF who were between attacks: eight with exon 10 mutations (group A), eight with exon 3 mutations (group B), and eight without exon 3 or 10 mutations (group C). We also investigated eight cases of PFAPA as disease controls. Exosome-rich fractionated RNA was subjected to miRNA profiling by microarray. Results: Using the expression patterns of 26 miRNAs, we classified FMF (groups A, B, and C) and PFAPA with 78.1% accuracy. In FMF patients, groups A and B, A and C, and B and C were distinguished with 93.8, 87.5, and 100% accuracy using 24, 30, and 25 miRNA expression patterns, respectively. Conclusions: These findings suggest that expression patterns of circulating miRNAs differ among FMF subgroups based on MEFV mutations between FMF episodes. These patterns may serve as a useful biomarker for detecting subgroups of FMF. Ā© 2017 Japan College of RheumatologyEmbargo Period 12 month
Measurement of the cross-section and forward-backward charge asymmetry for the b and c-quark in e+e- annihilation with inclusive muons at sqrt(s) = 58 GeV
We have studied inclusive muon events using all the data collected by the
TOPAZ detector at sqrt(s)=58 GeV with an integrated luminosity of 273pb-1. From
1328 inclusive muon events, we measured the ratio R_qq of the cross section for
qq-bar production to the total hadronic cross section and forward-backward
asymmetry A^q_FB for b and c quarks. The obtained results are R_bb =
0.13+-0.02(stat)+-0.01(syst), R_cc = 0.36+-0.05(stat)+-0.05(syst), A^b_FB =
-0.20+-0.16(stat)+-0.01(syst) and A^c_FB = -0.17+-0.14(stat)+-0.02(syst), in
fair agreement with a prediction of the standard model.Comment: To be published in EPJ C. 24 pages, 12 figure
Scope and Mechanistic Study of the Coupling Reaction of Ī±,Ī²-Unsaturated Carbonyl Compounds with Alkenes: Uncovering Electronic Effects on Alkene Insertion vs Oxidative Coupling Pathways
The cationic ruthenium-hydride complex [(C6H6)(PCy3)(CO)RuH]+BF4ā (1) was found to be a highly effective catalyst for the intermolecular conjugate addition of simple alkenes to Ī±,Ī²-unsaturated carbonyl compounds to give (Z)-selective tetrasubstituted olefin products. The analogous coupling reaction of cinnamides with electron-deficient olefins led to the oxidative coupling of two olefinic CāH bonds in forming (E)-selective diene products. The intramolecular version of the coupling reaction efficiently produced indene and bicyclic fulvene derivatives. The empirical rate law for the coupling reaction of ethyl cinnamate with propene was determined as follows: rate = k[1]1[propene]0[cinnamate]ā1. A negligible deuterium kinetic isotope effect (kH/kD = 1.1 Ā± 0.1) was measured from both (E)-C6H5CHāC(CH3)CONHCH3 and (E)-C6H5CDāC(CH3)CONHCH3 with styrene. In contrast, a significant normal isotope effect (kH/kD = 1.7 Ā± 0.1) was observed from the reaction of (E)-C6H5CHāC(CH3)CONHCH3 with styrene and styrene-d8. A pronounced carbon isotope effect was measured from the coupling reaction of (E)-C6H5CHāCHCO2Et with propene (13C(recovered)/13C(virgin) at CĪ² = 1.019(6)), while a negligible carbon isotope effect (13C(recovered)/13C(virgin) at CĪ² = 0.999(4)) was obtained from the reaction of (E)-C6H5CHāC(CH3)CONHCH3 with styrene. Hammett plots from the correlation of para-substituted p-X-C6H4CHāCHCO2Et (X = OCH3, CH3, H, F, Cl, CO2Me, CF3) with propene and from the treatment of (E)-C6H5CHāCHCO2Et with a series of para-substituted styrenes p-Y-C6H4CHāCH2 (Y = OCH3, CH3, H, F, Cl, CF3) gave the positive slopes for both cases (Ļ = +1.1 Ā± 0.1 and +1.5 Ā± 0.1, respectively). Eyring analysis of the coupling reaction led to the thermodynamic parameters, ĪHā§§ = 20 Ā± 2 kcal molā1 and ĪSā§§ = ā42 Ā± 5 eu. Two separate mechanistic pathways for the coupling reaction have been proposed on the basis of these kinetic and spectroscopic studies
Protoplasmic Astrocytes Enhance the Ability of Neural Stem Cells to Differentiate into Neurons In Vitro
Protoplasmic astrocytes have been reported to exhibit neuroprotective effects on neurons, but there has been no direct evidence for a functional relationship between protoplasmic astrocytes and neural stem cells (NSCs). In this study, we examined neuronal differentiation of NSCs induced by protoplasmic astrocytes in a co-culture model. Protoplasmic astrocytes were isolated from new-born and NSCs from the E13-15 cortex of rats respectively. The differentiated cells labeled with neuron-specific marker Ī²-tubulin III, were dramatically increased at 7 days in the co-culture condition. Blocking the effects of brain-derived neurotrophic factor (BDNF) with an anti-BDNF antibody reduced the number of neurons differentiated from NSCs when co-cultured with protoplasmic astrocytes. In fact, the content of BDNF in the supernatant obtained from protoplasmic astrocytes and NSCs co-culture media was significantly greater than that from control media conditions. These results indicate that protoplasmic astrocytes promote neuronal differentiation of NSCs, which is driven, at least in part, by BDNF
TP53 mutations, amplification of P63 and expression of cell cycle proteins in squamous cell carcinoma of the oesophagus from a low incidence area in Western Europe
In Europe, high incidence rates of oesophageal squamous cell carcinoma (SCCE) are observed in western France (Normandy and Brittany) and in north-eastern Italy. Analysis of TP53 mutations in tumours from these regions has shown a high prevalence of mutations at A:T basepairs that may result from DNA damage caused by specific mutagens. However, the spectrum of TP53 mutations in regions of low incidence is unknown. We report here TP53 mutation analysis in 33 SCCE collected in Lyon, an area of low incidence. These tumours were also examined for MDM2 and P63 amplification, and for expression of p16INK4a/CDKN2a, cyclin E, p27Kipland Cox2. TP53 mutations were detected in 36% of the cases (12/33). In contrast with regions of high incidence, the mutation spectrum did not show a high prevalence of mutations at A:T base pairs. P63 was amplified in 5/32 cases tested (15.5%). No amplification of MDM2 was found. Expression studies revealed frequent loss of p16INK4a/CDKN2a(46%) and p27Kipl(25%) expression, and frequent overexpression of Cyclin E (70%) and Cox2 (42%). Overall, these results indicate that in Europe, SCCE from areas of high and low incidence present a similar pattern of molecular alterations but differ by the type of TP53 mutations. Ā© 2001 Cancer Research Campaign http://www.bjcancer.co
Hippocampal Deletion of BDNF Gene Attenuates Gamma Oscillations in Area CA1 by Up-Regulating 5-HT3 Receptor
Background: Pyramidal neurons in the hippocampal area CA3 express high levels of BDNF, but how this BDNF contributes to oscillatory properties of hippocampus is unknown. Methodology/Principal Findings: Here we examined carbachol-induced gamma oscillations in hippocampal slices lacking BDNF gene in the area CA3. The power of oscillations was reduced in the hippocampal area CA1, which coincided with increases in the expression and activity of 5-HT3 receptor. Pharmacological block of this receptor partially restored power of gamma oscillations in slices from KO mice, but had no effect in slices from WT mice. Conclusion/Significance: These data suggest that BDNF facilitates gamma oscillations in the hippocampus by attenuating signaling through 5-HT3 receptor. Thus, BDNF modulates hippocampal oscillations through serotonergic system
The discovery of Hepatocyte Growth Factor (HGF) and its significance for cell biology, life sciences and clinical medicine
It has been more than 25 years since HGF was discovered as a mitogen of hepatocytes. HGF is produced by stromal cells, and stimulates epithelial cell proliferation, motility, morphogenesis and angiogenesis in various organs via tyrosine phosphorylation of its receptor, c-Met. In fetal stages, HGF-neutralization, or c-Met gene destruction, leads to hypoplasia of many organs, indicating that HGF signals are essential for organ development. Endogenous HGF is required for self-repair of injured livers, kidneys, lungs and so on. In addition, HGF exerts protective effects on epithelial and non-epithelial organs (including the heart and brain) via anti-apoptotic and anti-inflammatory signals. During organ diseases, plasma HGF levels significantly increased, while anti-HGF antibody infusion accelerated tissue destruction in rodents. Thus, endogenous HGF is required for minimization of diseases, while insufficient production of HGF leads to organ failure. This is the reason why HGF supplementation produces therapeutic outcomes under pathological conditions. Moreover, emerging studies delineated key roles of HGF during tumor metastasis, while HGF-antagonism leads to anti-tumor outcomes. Taken together, HGF-based molecules, including HGF-variants, HGF-fragments and c-Met-binders are available as regenerative or anti-tumor drugs. Molecular analysis of the HGF-c-Met system could provide bridges between basic biology and clinical medicine
- ā¦