60 research outputs found

    Single-cell phenomics reveals intra-species variation of phenotypic noise in yeast

    Get PDF
    BACKGROUND: Most quantitative measures of phenotypic traits represent macroscopic contributions of large numbers of cells. Yet, cells of a tissue do not behave similarly, and molecular studies on several organisms have shown that regulations can be highly stochastic, sometimes generating diversified cellular phenotypes within tissues. Phenotypic noise, defined here as trait variability among isogenic cells of the same type and sharing a common environment, has therefore received a lot of attention. Given the potential fitness advantage provided by phenotypic noise in fluctuating environments, the possibility that it is directly subjected to evolutionary selection is being considered. For selection to act, phenotypic noise must differ between contemporary genotypes. Whether this is the case or not remains, however, unclear because phenotypic noise has very rarely been quantified in natural populations. RESULTS: Using automated image analysis, we describe here the phenotypic diversity of S. cerevisiae morphology at single-cell resolution. We profiled hundreds of quantitative traits in more than 1,000 cells of 37 natural strains, which represent various geographical and ecological origins of the species. We observed abundant trait variation between strains, with no correlation with their ecological origin or population history. Phenotypic noise strongly depended on the strain background. Noise variation was largely trait-specific (specific strains showing elevated noise for subset of traits) but also global (a few strains displaying elevated noise for many unrelated traits). CONCLUSIONS: Our results demonstrate that phenotypic noise does differ quantitatively between natural populations. This supports the possibility that, if noise is adaptive, microevolution may tune it in the wild. This tuning may happen on specific traits or by varying the degree of global phenotypic buffering

    Systolic peak detection in acceleration photoplethysmograms measured from emergency responders in tropical conditions

    Get PDF
    Photoplethysmogram (PPG) monitoring is not only essential for critically ill patients in hospitals or at home, but also for those undergoing exercise testing. However, processing PPG signals measured after exercise is challenging, especially if the environment is hot and humid. In this paper, we propose a novel algorithm that can detect systolic peaks under challenging conditions, as in the case of emergency responders in tropical conditions. Accurate systolic-peak detection is an important first step for the analysis of heart rate variability. Algorithms based on local maxima-minima, first-derivative, and slope sum are evaluated, and a new algorithm is introduced to improve the detection rate. With 40 healthy subjects, the new algorithm demonstrates the highest overall detection accuracy (99.84% sensitivity, 99.89% positive predictivity). Existing algorithms, such as Billauer's, Li's and Zong's, have comparable although lower accuracy. However, the proposed algorithm presents an advantage for real-time applications by avoiding human intervention in threshold determination. For best performance, we show that a combination of two event-related moving averages with an offset threshold has an advantage in detecting systolic peaks, even in heat-stressed PPG signals.Mohamed Elgendi, Ian Norton, Matt Brearley, Derek Abbott, Dale Schuurman

    Role of ATP decrease in secretion induced by mitochondrial dysfunction in guinea-pig adrenal chromaffin cells

    No full text
    The mechanism related to mitochondrial dysfunction-induced catecholamine (CA) secretion in dispersed guinea-pig adrenal chromaffin cells was investigated using amperometry and confocal laser microscopy. Application of CCCP, which does not stimulate generation of reactive oxygen species (ROS), reversibly induced CA secretion, whereas application of either cyanide or oligomycin (OL), a stimulator for ROS, enhanced CA secretion to a smaller extent. The CCCP-induced secretion was abolished by removal of external Ca2+ ions and was markedly diminished by D600. The mitochondrial membrane potential, measured using rhodamine 123, was rapidly lost in response to CCCP, but did not change noticeably during a 3 min exposure to OL. Prior exposure to OL markedly facilitated depolarization of the mitochondrial membrane potential in response to cyanide. The mitochondrial inhibitors rapidly produced an increase in Magnesium Green (MgG) fluorescence in the absence of external Ca2+ and Mg2+ ions, an increase that was larger in the cytoplasm than in the nucleus. The rank order of potency in increasing MgG fluorescence among the inhibitors was similar to that in increasing secretion. Thus, mitochondrial inhibition rapidly decreases [ATP] and the mitochondrial dysfunction-induced secretion is not due to ROS generation or to mitochondrial depolarization, but is possibly mediated by a decrease in ATP

    Salivary alpha-amylase and cortisol responsiveness following electrically stimulated physical stress in bipolar disorder patients

    No full text
    Yoshihiro Tanaka, Yoshihiro Maruyama, Yoshinobu Ishitobi, Aimi Kawano, Tomoko Ando, Rie Ikeda, Ayako Inoue, Junko Imanaga, Shizuko Okamoto, Masayuki Kanehisa, Taiga Ninomiya, Jusen Tsuru, Jotaro Akiyoshi Department of Neuropsychiatry, Faculty of Medicine, Oita University, Hasama-Machi, Oita, Japan Background: Bipolar disorder (BP) is often associated with a change in hypothalamus–pituitary–adrenal axis function change due to chronic stress. Salivary α-amylase (sAA) levels increase in response to psychosocial stress and thus function as a marker of sympathoadrenal medullary system activity. However, sAA has been studied less often than salivary cortisol in BP patients. Method: We measured Profile of Mood States and State-Trait Anxiety Inventory scores, heart rate variability, and salivary cortisol levels during electrical stimulation stress in 25 BP patients and 22 healthy volunteers. Results: Tension–anxiety, depression–dejection, anger–hostility, fatigue, and confusion scores in BP patients significantly increased compared with those of the healthy controls. In contrast, the vigor scores of BP patients significantly decreased compared with those of the healthy controls. Significant difference in the sAA levels was observed between BP patients and healthy controls. sAA of female patients was significantly higher than that of female healthy controls, and sAA in male patients tended to be higher than that of male healthy controls. No difference in salivary cortisol was observed between BP patients and the healthy controls. Only three time points were measured before and after the electrical stimulation stress. Furthermore, sAA secretion by BP patients increased before and after electrical stimulation. Conclusion: These preliminary results suggest that sAA may be a useful biological marker for BP patients. Keywords: HPA axis, bipolar disorder, α-amylase, cortisol, SAM activit
    corecore