332 research outputs found
Enhancing the Superconducting Transition Temperature due to Strong-Coupling Effect under Antiferromagnetic Spin Fluctuations in CeRh1-xIrxIn5 : 115In-NQR Study
We report on systematic evolutions of antiferromagnetic (AFM) spin
fluctuations and unconventional superconductivity (SC) in heavy-fermion (HF)
compounds CeRhIrIn via In
nuclear-quadrupole-resonance (NQR) experiment. The measurements of nuclear
spin-lattice relaxation rate have revealed the marked development of
AFM spin fluctuations as a consequence of approaching an AFM ordered state with
increasing Rh content. Concomitantly the superconducting transition temperature
and the energy gap increase drastically from K and in CeIrIn up to K and in
CeRhIrIn, respectively. The present work suggests that the
AFM spin fluctuations in close proximity to the AFM quantum critical point are
indeed responsible for the onset of strong-coupling unconventional SC with the
line node in the gap function in HF compounds.Comment: 4pages,5figures,to appear in Phys. Rev. Let
Softening of Magnetic Excitations Leading to Pressure-Induced Quantum Phase Transition in Gapped Spin System KCuCl
KCuCl is a three dimensionally coupled spin dimer system, which undergoes
a pressure-induced quantum phase transition from a gapped ground state to an
antiferromagnetic state at a critical pressure of kbar.
Magnetic excitations in KCuCl at a hydrostatic pressure of 4.7 kbar have
been investigated by conducting neutron inelastic scattering experiments using
a newly designed cylindrical high-pressure clamp cell. A well-defined single
excitation mode is observed. The softening of the excitation mode due to the
applied pressure is clearly observed. From the analysis of the dispersion
relations, it is found that an intradimer interaction decreases under
hydrostatic pressure, while most interdimer interactions increase.Comment: 4 pages, 5 figures, 1 table, jpsj2.cls, to be published in J. Phys.
Soc. Jpn. Vol.76 (2007), the graphic problem of Fig.2 was fixe
Contrasting pressure evolution of f-electron hybridized states in CeRhIn5 and YbNi3 Ga9 : An optical conductivity study
Optical conductivity [σ (ω)] of CeRhIn5 and YbNi3Ga9 have been measured at external pressures to 10 GPa and at low temperatures to 6 K. Regarding CeRhIn5, at ambient pressure the main feature in σ (ω) is a Drude peak due to free carriers. With increasing pressure, however, a characteristic midinfrared (mIR) peak rapidly develops in σ (ω), and its peak energy and width increase with pressure. These features are consistent with an increased conduction (c)- f electron hybridization at high pressure and show that pressure has tuned the electronic state of CeRhIn5 from very weakly to strongly hybridized ones. As for YbNi3Ga9, in contrast, a marked mIR peak is observed already at ambient pressure, indicating a strong c- f hybridization. At high pressures, however, the mIR peak shifts to lower energy and becomes diminished and seems to merge with the Drude component at 10 GPa. Namely, CeRhIn5 and YbNi3Ga9 exhibit some opposite tendencies in the pressure evolution of σ (ω) and electronic structure. These results are discussed in terms of the pressure evolution of c- f hybridized electronic states in Ce and Yb compounds, in particular in terms of the electron-hole symmetry often considered between Ce and Yb
Pressure suppression of the excitonic insulator state in Ta2NiSe5 observed by optical conductivity
The layered chalcogenide Ta2NiSe5 has recently attracted much interest as a strong candidate for a long-sought excitonic insulator (EI). Since the physical properties of an EI are expected to depend sensitively on the external pressure (P), it is important to clarify the P evolution of a microscopic electronic state in Ta2NiSe5. Here we report the optical conductivity [σ (ω)] of Ta2NiSe5 measured at high P to 10 GPa and at low temperatures to 8 K. With cooling at P = 0, σ (ω) develops an energy gap of about 0.17 eV and a pronounced excitonic peak at 0.38 eV as reported previously. With increasing P, the energy gap becomes narrower and the excitonic peak is diminished. Above a structural transition at Ps ≃ 3 GPa, the energy gap becomes partially filled, indicating that Ta2NiSe5 is a semimetal after the EI state is suppressed by P. At higher P, σ (ω) exhibits metallic characteristics with no energy gap. The detailed P evolution of the energy gap and σ (ω) is presented, and discussed mainly in terms of a weakening of excitonic correlation with P
Robust hybridization gap in the Kondo insulator YbB12 probed by femtosecond optical spectroscopy
In heavy fermions the relaxation dynamics of photoexcited carriers has been found to be governed by the low energy indirect gap Eg resulting from hybridization between localized moments and conduction band electrons. Here, carrier relaxation dynamics in a prototype Kondo insulator YbB12 is studied over a large range of temperatures and over three orders of magnitude. We utilize the intrinsic nonlinearity of dynamics to quantitatively determine microscopic parameters, such as electron-hole recombination rate. The extracted value reveals that hybridization is accompanied by a strong charge transfer from localized 4 f levels. The results imply the presence of a hybridization gap up to temperatures of the order of Eg/kB ≈ 200 K, which is extremely robust against electronic excitation. Finally, below 20 K the data reveal changes in the low energy electronic structure, attributed to short-range antiferromagnetic correlations between the localized levels
Impurity-Induced Antiferromagnetic Ordering in the Spin Gap System TlCuCl_3
The magnetization measurements have been performed on the doped spin gap
system TlCu_{1-x}Mg_xCl_3 with x <= 0.025. The parent compound TlCuCl_3 is a
three-dimensional coupled spin dimer system with the excitation gap Delta/k_B =
7.7 K. The impurity-induced antiferromagnetic ordering was clearly observed.
The easy axis lies in the (0,1,0) plane. It was found that the transition
temperature increases with increasing Mg^{2+} concentration x, while the
spin-flop transition field is almost independent of x. The magnetization curve
suggests that the impurity-induced antiferromagnetic ordering coexists with the
spin gap for x <= 0.017.Comment: 5 pages, 6 figures, revtex styl
Long-wavelength iteration scheme and scalar-tensor gravity
Inhomogeneous and anisotropic cosmologies are modeled withing the framework
of scalar-tensor gravity theories. The inhomogeneities are calculated to
third-order in the so-called long-wavelength iteration scheme. We write the
solutions for general scalar coupling and discuss what happens to the
third-order terms when the scalar-tensor solution approaches at first-order the
general relativistic one. We work out in some detail the case of Brans-Dicke
coupling and determine the conditions for which the anisotropy and
inhomogeneity decay as time increases. The matter is taken to be that of
perfect fluid with a barotropic equation of state.Comment: 13 pages, requires REVTeX, submitted to Phys. Rev.
Exact Formulas and Simple CP dependence of Neutrino Oscillation Probabilities in Matter with Constant Density
We investigate neutrino oscillations in constant matter within the context of
the standard three neutrino scenario. We derive an exact and simple formula for
the oscillation probability applicable to all channels. In the standard
parametrization, the probability for transition can
be written in the form without any
approximation using CP phase . For
transition, the linear term of is added and the probability can
be written in the form . We give the CP dependences of
the probability for other channels. We show that the probability for each
channel in matter has the same form with respect to as in vacuum. It
means that matter effects just modify the coefficients , , and .
We also give the exact expression of the coefficients for each channel.
Furthermore, we show that our results with respect to CP dependences are
reproduced from the effective mixing angles and the effective CP phase
calculated by Zaglauer and Schwarzer. Through the calculation, a new identity
is obtained by dividing the Naumov-Harrison-Scott identity by the Toshev
identity.Comment: 12 pages, RevTeX4 style, changed title, minor correction
How should tracers be injected to detect for sentinel nodes in gastric cancer – submucosally from inside or subserosally from outside of the stomach?
<p>Abstract</p> <p>Background</p> <p>In sentinel node (SN) detection for cases of early gastric cancer, the submucosal dye injection method appears to be more reasonable than the subserosal injection. To compare the two injection methods, we have focused on the rate of concordance between hot nodes (HNs) obtained from the radioisotope (RI) method and green nodes (GNs) obtained from the dye-guided method in addition to the number and distribution of GNs detected, and the sensitivity of metastatic detection.</p> <p>Methods</p> <p>The subjects of this study were 63 consecutive patients with gastric cancer (sT1–T2, sN0, tumor diameter ≦ 4 cm) in whom we attempted SN detection using a combination of RI and dye methods. <sup>99m</sup>Tc-tin colloid was injected a day before the surgery, and indocyanine green was injected either submucosally (n = 43) with endoscopes or subserosally (n = 20) by direct vision.</p> <p>Results</p> <p>An average of hot and green nodes (H&G: 4 ± 3 vs. 4 ± 3), hot and non-green nodes (H&NG: 2 ± 3 vs. 1 ± 2), cold and green nodes (C&G: 2 ± 2 vs. 3 ± 4), and the rate of concordance (H&G/H&G + H&NG + C&G: 45 + 27% vs. 48 ± 30%) were not significantly different between the submucosal and subserosal injection methods. The spread of GNs to tier 2 stations (24% vs. 30%) and metastatic detection sensitivity (86% vs. 100%) were also not different between the submucosal and subserosal injection methods.</p> <p>Conclusion</p> <p>The tracer injection sites do not have to be limited to the submucosa.</p
P120-Catenin Isoforms 1 and 3 Regulate Proliferation and Cell Cycle of Lung Cancer Cells via β-Catenin and Kaiso Respectively
<div><h3>Background</h3><p>The different mechanisms involved in p120-catenin (p120ctn) isoforms' 1/3 regulation of cell cycle progression are still not elucidated to date.</p> <h3>Methods and Findings</h3><p>We found that both cyclin D1 and cyclin E could be effectively restored by restitution of p120ctn-1A or p120ctn-3A in p120ctn depleted lung cancer cells. When the expression of cyclin D1 was blocked by co-transfection with siRNA-cyclin D1 in p120ctn depleted cells restoring p120ctn-1A or 3A, the expression of cyclin E was slightly decreased, not increased, implying that p120ctn isoforms 1 and 3 cannot up-regulate cyclin E directly but may do so through up-regulation of cyclin D1. Interestingly, overexpression of p120ctn-1A increased β-catenin and cyclin D1 expression, while co-transfection with siRNA targeting β-catenin abolishes the effect of p120ctn-1A on up-regulation of cyclin D1, suggesting a role of β-catenin in mediating p120ctn-1A's regulatory function on cyclin D1 expression. On the other hand, overexpression of p120ctn isoform 3A reduced nuclear Kaiso localization, thus decreasing the binding of Kaiso to KBS on the cyclin D1 promoter and thereby enhancing the expression of cyclin D1 gene by relieving the repressor effect of Kaiso. Because overexpressing NLS-p120ctn-3A (p120ctn-3A nuclear target localization plasmids) or inhibiting nuclear export of p120ctn-3 by Leptomycin B (LMB) caused translocation of Kaiso to the nucleus, it is plausible that the nuclear export of Kaiso is p120ctn-3-dependent.</p> <h3>Conclusions</h3><p>Our results suggest that p120ctn isoforms 1 and 3 up-regulate cyclin D1, and thereby cyclin E, resulting in the promotion of cell proliferation and cell cycle progression in lung cancer cells probably via different protein mediators, namely, β-catenin for isoform 1 and Kaiso, a negative transcriptional factor of cyclin D1, for isoform 3.</p> </div
- …