9,580 research outputs found

    A class of multivariate distribution-free tests of independence based on graphs

    Get PDF
    AbstractA class of distribution-free tests is proposed for the independence of two subsets of response coordinates. The tests are based on the pairwise distances across subjects within each subset of the response. A complete graph is induced by each subset of response coordinates, with the sample points as nodes and the pairwise distances as the edge weights. The proposed test statistic depends only on the rank order of edges in these complete graphs. The response vector may be of any dimensions. In particular, the number of samples may be smaller than the dimensions of the response. The test statistic is shown to have a normal limiting distribution with known expectation and variance under the null hypothesis of independence. The exact distribution free null distribution of the test statistic is given for a sample of size 14, and its Monte-Carlo approximation is considered for larger sample sizes. We demonstrate in simulations that this new class of tests has good power properties for very general alternatives

    Cross‐campus Collaboration: A Scientometric and Network Case Study of Publication Activity Across Two Campuses of a Single Institution

    Get PDF
    Team science and collaboration have become crucial to addressing key research questions confronting society. Institutions that are spread across multiple geographic locations face additional challenges. To better understand the nature of cross‐campus collaboration within a single institution and the effects of institutional efforts to spark collaboration, we conducted a case study of collaboration at Cornell University using scientometric and network analyses. Results suggest that cross‐campus collaboration is increasingly common, but is accounted for primarily by a relatively small number of departments and individual researchers. Specific researchers involved in many collaborative projects are identified, and their unique characteristics are described. Institutional efforts, such as seed grants and topical retreats, have some effect for researchers who are central in the collaboration network, but were less clearly effective for others

    Phase-space correlations of chaotic eigenstates

    Full text link
    It is shown that the Husimi representations of chaotic eigenstates are strongly correlated along classical trajectories. These correlations extend across the whole system size and, unlike the corresponding eigenfunction correlations in configuration space, they persist in the semiclassical limit. A quantitative theory is developed on the basis of Gaussian wavepacket dynamics and random-matrix arguments. The role of symmetries is discussed for the example of time-reversal invariance.Comment: Published version with minor corrections to version

    The Arbitrary Trajectory Quantization Method

    Full text link
    The arbitrary trajectory quantization method (ATQM) is a time dependent approach to quasiclassical quantization based on the approximate dual relationship that exists between the quantum energy spectra and classical periodic orbits. It has recently been shown however, that, for polygonal billiards, the periodicity criterion must be relaxed to include closed almost-periodic (CAP) orbit families in this relationship. In light of this result, we reinvestigate the ATQM and show that at finite energies, a smoothened quasiclassical kernel corresponds to the modified formula that includes CAP families while the delta function kernel corresponding to the periodic orbit formula is recovered at high energies. Several clarifications are also provided.Comment: revtex, ps figure

    Plasmid Injection and Application of Electric Pulses Alter Endogenous mRNA and Protein Expression in B16.F10 Mouse Melanomas

    Get PDF
    The application of electric pulses to tissues causes cell membrane destabilization, allowing exogenous molecules to enter the cells. This delivery technique can be used for plasmid gene therapy. Reporter gene expression after plasmid delivery with eight representative published protocols was compared in B16.F10 mouse melanoma tumors. This expression varied significantly based on the pulse parameters utilized for delivery. To observe the possible influence of plasmid injection and/or pulse application on endogenous gene expression, levels of stress-related mRNAs 4 and 24 h after delivery were determined by PCR array. Increases in mRNA levels for several inflammatory chemokines and cytokines were observed in response to plasmid injection, electric pulses alone or the combination. This upregulation was confirmed by individual real-time reverse transcription TaqMan PCR assays. Proteins were extracted at the same time points from identically treated tumors and inflammatory protein levels were assayed by enzyme-linked immunosorbent assay and by a custom multiplex bead array. Increases in inflammatory protein levels generally paralleled mRNA levels. Some differences were observed, which may have been due to differing expression kinetics. The observed upregulated expression of these cytokines and chemokines may aid or inhibit the therapeutic effectiveness of immune-based cancer gene therapies

    Microscopic eigenvalue correlations in QCD with imaginary isospin chemical potential

    Full text link
    We consider the chiral limit of QCD subjected to an imaginary isospin chemical potential. In the epsilon-regime of the theory we can perform precise analytical calculations based on the zero-momentum Goldstone modes in the low-energy effective theory. We present results for the spectral correlation functions of the associated Dirac operators.Comment: 13 pages, 2 figures, RevTe

    Hall of Mirrors Scattering from an Impurity in a Quantum Wire

    Full text link
    This paper develops a scattering theory to examine how point impurities affect transport through quantum wires. While some of our new results apply specifically to hard-walled wires, others--for example, an effective optical theorem for two-dimensional waveguides--are more general. We apply the method of images to the hard-walled guide, explicitly showing how scattering from an impurity affects the wire's conductance. We express the effective cross section of a confined scatterer entirely in terms of the empty waveguide's Green's function, suggesting a way in which to use semiclassical methods to understand transport properties of smooth wires. In addition to predicting some new phenomena, our approach provides a simple physical picture for previously observed effects such as conductance dips and confinement-induced resonances.Comment: 19 pages, 8 figures. Accepted for publication in Physical Review B. Minor additions to text, added reference
    corecore