27 research outputs found

    A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila

    Get PDF
    Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens

    Four patients with speech delay, seizures and variable corpus callosum thickness sharing a 0.440 Mb deletion in region 1q44 containing the HNRPU gene

    No full text
    Structural genome aberrations are frequently associated with highly variable congenital phenotypes involving mental retardation and developmental delay. Although some of these aberrations may result in recognizable phenotypes, a high degree of phenotypic variability often complicates a comprehensive clinical and genetic diagnosis. We describe four patients with overlapping deletions in chromosomal region 1q44, who show developmental delay, in particular of expressive speech, seizures, hypotonia, CNS anomalies, including variable thickness of the abnormal corpus callosum in three of them. High resolution oligonucleotide and SNP array-based segmental aneuploidy profiling showed that these three patients share a 0.440 Mb interstitial deletion, which does not overlap with previously published consensus regions of 1q44 deletions. Two copies of AKT3 and ZNF238, two previously proposed dosage sensitive candidate genes for microcephaly and agenesis of the corpus callosum, were retained in two of our patients. The deletion shared by our patients encompassed the FAM36A, HNRPU, EFCAB2 and KIF26B genes. Since HNRPU is involved in the regulation of embryonic brain development, this represents a novel plausible candidate gene for the combination of developmental delay, speech delay, hypotonia, hypo-or agenesis of the corpus callosum, and seizures in patients with 1q44 deletions. Since only one of the two patients with deletions including the ZNF124 gene showed a vermis hypoplasia, mere hemizygosity for this gene is not sufficient to cause this anomaly. Moreover, to reconcile the variability in the corpus callosum thickness, additional mechanisms, such as unmasking of hemizygous mutations, position effects and possible interactions with other loci need consideration. (C) 2010 Elsevier Masson SAS. All rights reserved
    corecore