12 research outputs found

    Foldamers of β-peptides : conformational preference of peptides formed by rigid building blocks : The first MI-IR spectra of a triamide nanosystem

    Get PDF
    To determine local chirality driven conformational preferences of small aminocyclobutane-1-carboxylic acid derivatives, X-(ACBA) n -Y, their matrix-isolation IR spectra were recorded and analyzed. For the very first time model systems of this kind were deposited in a frozen (~10 K) noble gas matrix to reduce line width and thus, the recorded sharp vibrational lines were analyzed in details. For cis-(S,R)-1 monomer two “zigzag” conformers composed of either a six or an eight-membered H-bonded pseudo ring was identified. For trans-(S,S)-2 stereoisomer a zigzag of an eight-membered pseudo ring and a helical building unit were determined. Both findings are fully consistent with our computational results, even though the relative conformational ratios were found to vary with respect to measurements. For the dimers (S,R,S,S)-3 and (S,S,S,R)-4 as many as four different cis,trans and three different trans,cis conformers were localized in their matrix-isolation IR (MI-IR) spectra. These foldamers not only agree with the previous computational and NMR results, but also unambiguously show for the first time the presence of a structure made of a cis,trans conformer which links a “zigzag” and a helical foldamer via a bifurcated H-bond. The present work underlines the importance of MI-IR spectroscopy, applied for the first time for triamides to analyze the conformational pool of small biomolecules. We have shown that the local chirality of a β-amino acid can fully control its backbone folding preferences. Unlike proteogenic α-peptides, β- and especially (ACBA) n type oligopeptides could thus be used to rationally design and influence foldamer’s structural preferences

    Role of hydration in determining the structure and vibrational spectra of L-alanine and N-acetyl L-alanine N'-methylamide in aqueous solution: a combined theoretical and experimental approach

    No full text
    In this work we have utilised recent density functional theory Born-oppenheimer molecular dynamics simulations to determine the first principles locations of the water molecules in the first solvation shell which are responsible for stabilizing the zwitterionic structure of L-alanine. Previous works have used chemical intuition or classical molecular dynamics simulations to position the water molecules. In addition, a complete shell of water molecules was not previously used, only the water molecules which were thought to be strongly interacting (H-bonded) with the zwitterionic species. In a previous work by Tajkhorshid et al. (J Phys Chem B 102:5899) the l-alanine zwitterion was stabilized by 4 water molecules, and a subsequent work by Frimand et al. (Chem Phys 255:165) the number was increased to 9 water molecules. Here we found that 20 water molecules are necessary to fully encapsulate the zwitterionic species when the molecule is embedded within a droplet of water, while 11watermolecules are necessary to encapsulate the polar region with themethyl group exposed to the surface, where it migrates during the MD simulation. Here we present our vibrational absorption, vibrational circular dichroism and Raman and Raman optical activity simulations, which we compare to the previous simulations and experimental results. In addition, we report new VA, VCD, Raman and ROA measurements for l-alanine in aqueous solution with the latest commercially available FTIR VA/VCD instrument (Biotools, Jupiter, FL, USA) and Raman/ROA instrument (Biotools). The signal to noise of the spectra of l-alanine measured with these new instruments is significantly better than the previously reported spectra. Finally we reinvestigate the causes for the stability of the Pp structure of the alanine dipeptide, also called N-acetyl-l-alanine N-methylamide, in aqueous solution. Previously we utilized the B3LYP/6-31G* + Onsager continuum level of theory to investigate the stability of the ALANMA4WC Han et al. (J Phys Chem B 102:2587) Here we use the B3PW91 and B3LYP hybrid exchange correlation functionals, the aug-cc-pVDZ basis set and the PCMand CPCM (COSMO) continuum solvent models, in addition to the Onsager and no continuum solvent model. Here by the comparison of the VA, VCD, Raman and ROA spectra we can confirm the stability of the NALANMA4WC due to the strong hydrogen bonding between the fourwatermolecules and the peptide polar groups. Hence we advocate the use of explicit water molecules and continuum solvent treatment for all future spectral simulations of amino acids, peptides and proteins in aqueous solution, as even the structure (conformer) present cannot always be found without this level of theory
    corecore