55 research outputs found

    Towards Analyzing Semantic Robustness of Deep Neural Networks

    Full text link
    Despite the impressive performance of Deep Neural Networks (DNNs) on various vision tasks, they still exhibit erroneous high sensitivity toward semantic primitives (e.g. object pose). We propose a theoretically grounded analysis for DNN robustness in the semantic space. We qualitatively analyze different DNNs' semantic robustness by visualizing the DNN global behavior as semantic maps and observe interesting behavior of some DNNs. Since generating these semantic maps does not scale well with the dimensionality of the semantic space, we develop a bottom-up approach to detect robust regions of DNNs. To achieve this, we formalize the problem of finding robust semantic regions of the network as optimizing integral bounds and we develop expressions for update directions of the region bounds. We use our developed formulations to quantitatively evaluate the semantic robustness of different popular network architectures. We show through extensive experimentation that several networks, while trained on the same dataset and enjoying comparable accuracy, do not necessarily perform similarly in semantic robustness. For example, InceptionV3 is more accurate despite being less semantically robust than ResNet50. We hope that this tool will serve as a milestone towards understanding the semantic robustness of DNNs.Comment: Presented at European conference on computer vision (ECCV 2020) Workshop on Adversarial Robustness in the Real World ( https://eccv20-adv-workshop.github.io/ ) [best paper award]. The code is available at https://github.com/ajhamdi/semantic-robustnes

    Semi-supervised Learning based on Distributionally Robust Optimization

    Full text link
    We propose a novel method for semi-supervised learning (SSL) based on data-driven distributionally robust optimization (DRO) using optimal transport metrics. Our proposed method enhances generalization error by using the unlabeled data to restrict the support of the worst case distribution in our DRO formulation. We enable the implementation of our DRO formulation by proposing a stochastic gradient descent algorithm which allows to easily implement the training procedure. We demonstrate that our Semi-supervised DRO method is able to improve the generalization error over natural supervised procedures and state-of-the-art SSL estimators. Finally, we include a discussion on the large sample behavior of the optimal uncertainty region in the DRO formulation. Our discussion exposes important aspects such as the role of dimension reduction in SSL

    Improved functional prediction of proteins by learning kernel combinations in multilabel settings

    Get PDF
    Background We develop a probabilistic model for combining kernel matrices to predict the function of proteins. It extends previous approaches in that it can handle multiple labels which naturally appear in the context of protein function. Results Explicit modeling of multilabels significantly improves the capability of learning protein function from multiple kernels. The performance and the interpretability of the inference model are further improved by simultaneously predicting the subcellular localization of proteins and by combining pairwise classifiers to consistent class membership estimates. Conclusion For the purpose of functional prediction of proteins, multilabels provide valuable information that should be included adequately in the training process of classifiers. Learning of functional categories gains from co-prediction of subcellular localization. Pairwise separation rules allow very detailed insights into the relevance of different measurements like sequence, structure, interaction data, or expression data. A preliminary version of the software can be downloaded from http://www.inf.ethz.ch/personal/vroth/KernelHMM/.ISSN:1471-210

    Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Determination of protein subcellular localization plays an important role in understanding protein function. Knowledge of the subcellular localization is also essential for genome annotation and drug discovery. Supervised machine learning methods for predicting the localization of a protein in a cell rely on the availability of large amounts of labeled data. However, because of the high cost and effort involved in labeling the data, the amount of labeled data is quite small compared to the amount of unlabeled data. Hence, there is a growing interest in developing <it>semi-supervised methods</it> for predicting protein subcellular localization from large amounts of unlabeled data together with small amounts of labeled data.</p> <p>Results</p> <p>In this paper, we present an Abstraction Augmented Markov Model (AAMM) based approach to semi-supervised protein subcellular localization prediction problem. We investigate the effectiveness of AAMMs in exploiting <it>unlabeled</it> data. We compare semi-supervised AAMMs with: (i) Markov models (MMs) (which do not take advantage of unlabeled data); (ii) an expectation maximization (EM); and (iii) a co-training based approaches to semi-supervised training of MMs (that make use of unlabeled data).</p> <p>Conclusions</p> <p>The results of our experiments on three protein subcellular localization data sets show that semi-supervised AAMMs: (i) can effectively exploit unlabeled data; (ii) are more accurate than both the MMs and the EM based semi-supervised MMs; and (iii) are comparable in performance, and in some cases outperform, the co-training based semi-supervised MMs.</p

    Robust ordinal regression in preference learning and ranking

    Get PDF
    Multiple Criteria Decision Aiding (MCDA) offers a diversity of approaches designed for providing the decision maker (DM) with a recommendation concerning a set of alternatives (items, actions) evaluated from multiple points of view, called criteria. This paper aims at drawing attention of the Machine Learning (ML) community upon recent advances in a representative MCDA methodology, called Robust Ordinal Regression (ROR). ROR learns by examples in order to rank a set of alternatives, thus considering a similar problem as Preference Learning (ML-PL) does. However, ROR implements the interactive preference construction paradigm, which should be perceived as a mutual learning of the model and the DM. The paper clarifies the specific interpretation of the concept of preference learning adopted in ROR and MCDA, comparing it to the usual concept of preference learning considered within ML. This comparison concerns a structure of the considered problem, types of admitted preference information, a character of the employed preference models, ways of exploiting them, and techniques to arrive at a final ranking

    Anisotropic noise injection for input variables relevance determination

    No full text

    Diagnosis Of Glass Quality In A Manufacturing Process: Two Connectionist Solutions

    No full text
    We describe and compare two kinds of connexionist solutions for predicting the quality rating of glass according to chemical inlet of the manufacturing process. We show that according to the approach used to select a predictor in the set of Multilayered perceptrons, the results may vary dramatically. We also show some practical limitations of prediction error estimates based on resampling techniques
    • 

    corecore